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Preface
Objective

This book is intended as a general reference for the physics, concepts, theories, and models underlying
the discipline of aerodynamics. An overarching theme is the technique of velocity field representation and
modeling via source and vorticity fields, and via their sheet, filament, or point-singularity idealizations.
These models provide an intuitive feel for aerodynamic flow behavior, and are also the basis of aerodynamic
force analysis, drag decomposition, flow interference estimation, wind tunnel corrections, computational
methods, and many other important applications.

This book covers some topics in depth, while offering introductions or summaries of others. In particular,
Chapters 3,4 on Boundary Layers, Chapter 7 on Unsteady Aerodynamics, and Chapter 9 on Flight Dynamics
are intended as introductions and overviews of those topics, which deserve to be properly treated in separate
dedicated texts. Similarly, there are only glancing mentions of the related topic of Propulsion, which is its
own discipline.

Computational Fluid Dynamics (CFD) and computational methods in general are indispensable for today’s
practicing aerodynamicist. Hence a few computational methods are described here, primarily the vortex lat-
tice and panel methods which are based on the source and vorticity flow-field representation. The main goal
is to provide improved understanding of the concepts and physical models which underlie such methods.

Most of this book is based on the lecture notes, handouts, and reference materials which have been devel-
oped for the course Flight Vehicle Aerodynamics (course number 16.110) taught by the author at MIT’s
Department of Aeronautics and Astronautics. This course is intended for first-year graduate students, but
has also attracted a significant number of advanced undergraduates.

Preparation

This book assumes that the reader is well versed in basic physics and vector calculus, and already has had
exposure to basic fluid mechanics and aerodynamics. Hence, little or no space is devoted to introduction or
discussion of basic concepts such as fluid velocity, density, pressure, viscosity, stress, etc. Chapter 1 on the
Physics of Aerodynamics Flows is intentionally concise, since it is intended primarily as a reference for the
underlying physical principles and governing equations of fluid flows rather than as a first introduction to
these topics. The author’s course at MIT begins with Chapter 2.

Some familiarity with aerodynamics and aeronautics terminology is assumed on the part of the reader. How-
ever, a summary of advanced vector calculus notation is given in Appendix A, since this is not commonly
seen in basic vector calculus texts.
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x Cartesian coordinate, p. 3

x̂ Cartesian x unit vector, p. 3

x Flight-dynamics state vector, p. 206

X Axial force, p. 206

X Normalized wind tunnel coordinate, p. 225
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Z ′ Airfoil surface slope, p. 174
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β Clauser pressure gradient parameter, p. 73

β Sideslip angle, p. 124
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√

1−M2
∞ ), p. 173
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√

M2
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δ∗ Displacement thickness, p. 49

δFS Falkner-Skan boundary layer normal length scale, p. 71

δ∗∗ Density flux thickness, p. 66

Δ∗ Displacement area, p. 75

δ Flight-dynamics control vector, p. 206

ε Small quantity, p. 169

ε Maximum camber, p. 175

ε Wing downwash angle at tail, p. 217

ζ Damping ratio, p. 212

η Boundary layer normal coordinate ( = n/δ ), p. 70

ϑ Glauert angle coordinate, p. 112

θ Polar angle coordinate, p. 38

θ Aircraft pitch angle, p. 202

Θ Angle kernel function, p. 38

θ Momentum thickness, p. 59
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σ Source density (dilatation rate ∇ ·V), p. 6

Σ Source point strength, p. 27

¯̄τ Viscous stress tensor, p. 5

τ Viscous stress vector, p. 5

Υ Effective wing dihedral angle, p. 216

ϕ Perturbation velocity potential, p. 38

φ Velocity potential, p. 19

φ Normalized perturbation potential, p. 170

φ Aircraft roll angle, p. 202

Φ Wagner function, p. 154

Φ Full velocity potential, p. 166

χ Flow curvature from wind tunnel images, p. 228

ψ Aircraft heading angle, p. 202

Ψ Küssner function, p. 154

ω Imaginary part of flight-dynamics eigenvalue (radian frequency), p. 207

ω Vorticity (in 2D), p. 28

ω Vorticity vector (in 3D), p. 17

Ω Body angular velocity vector, p. 4
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( )′ Dummy variable of integration, p. 2

( )b Vector component in body axes, p. 265

( )e Vector component in Earth axes, p. 265
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Chapter 1

Physics of Aerodynamic Flows
This chapter will describe the properties of atmospheric air, summarize key physical relations between these
properties, and derive the equations of fluid motion which form the basis of aerodynamics.

1.1 Atmospheric Properties

A typical dimension � of any common aircraft is vastly greater than the molecular mean free path λ of the
air at any practical operating altitude, as quantified by the Knudsen number Kn ≡ λ/� � 1. Consequently
the air can be considered to be a continuum fluid having a density ρ, pressure p, temperature T , and speed of
sound a at every point in space and time. There are also viscous stresses and heat conduction at each point,
which are quantified by the fluid’s viscosity μ and heat conductivity k. The US Standard Atmosphere [1]
has the following values for these properties for air at sea level.

density: ρSL = 1.225 kg/m3

pressure: pSL = 1.0132 × 105 Pa
temperature: TSL = 288.15 K
speed of sound: aSL = 340.3 m/s
viscosity: μSL = 1.79 × 10−5 kg/m-s

(1.1)

Reference [1] also gives equations for these quantities at other altitudes, and tabulated values are also avail-
able from many sources. Alternatively, the following curve-fit formulas for the pressure and temperature
may be more convenient for numerical work, with the altitude z in kilometers and temperatures in Kelvin.

p(z) = pSL exp

(
−0.118 z − 0.0015 z2

1− 0.018 z + 0.0011 z2

)
(1.2)

T (z) = 216.65 + 2.0 ln
[
1 + exp

(
35.75 − 3.25 z

)
+ exp

(
−3.0 + 0.0003 z3

)]
(1.3)

These approximations are accurate for z<47 km, and are shown in Figure 1.1 for z<26 km.

With p(z) and T (z) known, the atmospheric density ρ(z) can then be obtained from the ideal gas law (1.7),
and the speed of sound can be obtained from expression (1.70) given in Section 1.7.3. The viscosity is
accurately given by Sutherland’s Law with TS=110K for air,

μ(z) = μ(T (z)) = μSL

(
T

TSL

)3/2 TSL + TS

T + TS

(1.4)

which can also be used to relate the local viscosity to the local temperature at any point in a flow-field.

For gases, the heat conductivity k can be most easily obtained from the viscosity via the Prandtl number,
Pr ≡ cp μ/k, which is very nearly constant across a wide range of temperatures. The specific heat cp will
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Figure 1.1: Atmospheric properties versus altitude, relative to sea-level values. Symbols are from
the US Standard Atmosphere. Lines are curve fits (1.2), (1.3), and gas relations (1.4), (1.7), (1.70).

be defined in the next section.

k = cp μ/Pr (1.5)

Pr = 0.72 (for air) (1.6)

1.2 Ideal-Gas Thermodynamic Relations

The ideal gas law

p = ρRT (1.7)

R = 287.04 J/kg-K (for air)

is an example of an equation of state, and is accurate for all common gases over a wide range of temperatures
and pressures. The specific gas constant R is inversely proportional to the average molecular weight.

An additional important state variable is the specific internal energy e, which together with p and ρ also
defines the specific enthalpy h.

h ≡ e + p/ρ (1.8)

= e + RT (for ideal gas) (1.9)

For a thermally perfect gas, both e and h depend only on the temperature, and are respectively defined via
the specific heat at constant volume cv(T ), and the specific heat at constant pressure cp(T ).

e(T ) = eref +

∫ T

Tref

cv(T ′) dT ′

h(T ) = href +

∫ T

Tref

cp(T ′) dT ′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (thermally perfect gas) (1.10)

The reference values are arbitrary, since only changes in e and h are physically meaningful. The ideal-gas
h definition (1.9) implies the following relation between the specific heats and the specific gas constant.

cp(T ) = cv(T ) + R (1.11)
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For a calorically perfect gas, both cv and cp are constant, which makes e and h directly proportional to T ,

e = cv T
h = cp T

}
(calorically perfect gas) (1.12)

where zero reference values have been chosen. Air at ordinary temperatures is very nearly calorically
perfect. Hence, definitions (1.12) are appropriate for external aerodynamic flows, and here it is more natural
to work directly with the enthalpy rather than the temperature. A more convenient form of the ideal gas
law (1.7) is then given in terms of the enthalpy and the specific heat ratio γ.

γp = (γ−1)ρh (1.13)

γ ≡ cp/cv (1.14)

= 1.4 (for air)

cp =
γ

γ−1 R = 1004.6 J/kg-K (for air)

In extreme conditions, such as those inside gas turbine hot sections, cv and cp can no longer be assumed to
be independent of temperature, so the more general e(T ) and h(T ) definitions (1.10) must be used. Also, γ
then depends on temperature and thus has limited applicability. However, R is still nearly constant and the
temperature form of the ideal gas law (1.7) still applies.

1.3 Conservation Laws

This section will apply the laws of conservation of mass, momentum, and energy to the fluid instantaneously
inside any closed control volume which is fixed in space, shown in Figure 1.2.

energy

momentum

mass

surface  forces, fluxes

control volume

volume
forces, heating

Figure 1.2: Control volume in a flow-field. The time rates of the mass, momentum, and energy
inside the control volume are related to the volume and surface forces and fluxes.

All flow-field quantities in general are functions of the spatial position vector r and of time t. Although
the subsequent development uses general vector forms and operations, special cases will typically assume
Cartesian axes, in which case the position and velocity vectors have the following Cartesian components.

r = x x̂ + y ŷ + z ẑ (1.15)

V = u x̂ + v ŷ + w ẑ (1.16)
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1.3.1 Mass, momentum, energy fluxes
The mass flux is the local mass flow rate per unit area moving through the control volume’s surface, shown
in Figure 1.3. It is equal to the density times the surface-normal component of the velocity.

(mass flux) = ρV· n̂

The mass flux also results in a momentum flux, defined as

V

n

ρ,

V n.

V n.ρ ( ) V n.ρ ( ) V n.ρ ( ) oV
surface

Flowfield and Surface
Mass Flux Momentum Flux Total Energy Flux

e

oe

Figure 1.3: Flow-field quantities ρ,V, eo together with a surface’s normal vector n̂ define mass,
momentum, and total internal energy fluxes across each surface point. These are associated with
bulk fluid motion.

momentum flux = (mass flux)× momentum/mass

= ρ(V· n̂)V

and which is a vector quantity. In an analogous manner, we can define the total internal energy flux,

total internal energy flux = (mass flux)× (total internal energy)/mass

= ρ(V· n̂) eo

where eo is the specific total energy, defined as the specific static energy plus the specific kinetic energy.

eo ≡ e + 1
2V

2 (1.17)

V 2 = V·V = u2 + v2 + w2

The specific total enthalpy ho and its flux are defined the same way.

ho ≡ h + 1
2V

2 (1.18)

total enthalpy flux = ρ(V· n̂)ho

1.3.2 Volume forces, work rate, heating
The fluid can be subjected to a force field f (r,t), the most common example being gravitational acceleration
gg. In a non-inertial frame this would also include d’Alembert, centrifugal, and Coriolis forces,

f (r,t) = gg − U̇ − Ω̇×r − Ω×(Ω×r) − 2Ω×V (1.19)

where U(t) is the inertial velocity of the frame’s reference point, Ω(t) is the frame’s rotation, r is the position
vector relative to the reference point, and V(r,t) is the velocity within the non-inertial frame. These quantities
are diagrammed in Figure 7.1, in which V is denoted by Vrel. Flow-Field description in non-inertial frames
will not be performed here, so that a constant f = gg will be assumed in the most general case.
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For application of f to the equations of fluid motion, the actual relevant quantity is ρ f , which has units of
force per unit volume. When acting on fluid moving with local velocity V, this volume force will impart a
work rate ẇV(r,t) equal to

ẇV = ρ f ·V (1.20)

which has units of power per unit volume. Possibly adding to this mechanical power is a thermal heating
rate, quantified by some imposed body heating source density

q̇V = q̇V(r,t)

which also has units of power per unit volume. This might be from absorbed radiation or combustion.
Outside a turbomachine combustor, and for the vast majority of external aerodynamic flows, q̇V is zero.

1.3.3 Surface forces, work rate, heating
The fluid is subjected to stress, or force per unit area, acting on every area element of the surface of the
control volume. This is broken down into the pressure stress −pn̂ along and opposite to the surface-normal
n̂, and the viscous stress vector τ which can have any orientation, as shown in Figure 1.4.

np−
n

,

surface Viscous Stress
ττ

q
.p

Δ

V,μ

, Tk

Δ

Flowfield and Surface

q.
Conductive Heat Flux

V
.w .w
Pressure Work Viscous Work

Pressure Stress

(shown per unit speed) (shown per unit speed)

S S

S

Figure 1.4: Flow-field quantities p, μ,∇V together with a surface normal vector n̂ define pressure
and viscous stress forces acting on each surface point, with corresponding work contributions ẇS.
Flow-Field quantities k,∇T define the conductive heat flux vector q̇ at each surface point, with
corresponding normal flux component q̇S. These are all associated with molecular motion.

The pressure stress is isotropic (same magnitude for any n̂ direction), and is the only stress which can be
present in a fluid which either has a spatially-uniform velocity, or is in solid-body rotation, as shown in
Figure 1.5. In contrast, the viscous stress is the result of the fluid’s deformation rate, or equivalently the
strain rate, also shown in Figure 1.5. More precisely, the viscous stress vector τ acting on a surface with
unit normal n̂ is given by

τ = ¯̄τ · n̂ (1.21)

where ¯̄τ is the viscous stress tensor, which is symmetric and therefore has six independent components.

ττ= 0=

Uniform flow Simple shear flowSolid−body rotation

ττ= 0= ττ= 0=

Figure 1.5: Viscous stresses occur in a fluid element which is subjected to a strain rate, as in the
simple shear flow case.

Common gases and liquids like air and water are Newtonian fluids, for which the ¯̄τ components are pro-
portional (via the viscosity factor) to the corresponding strain rate tensor components, which in turn are
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constructed from the nine independent components of the velocity gradient matrix ∇V (see Batchelor [2]).

¯̄τ =

⎡⎣τxx τxy τxz
· τyy τyz
· · τzz

⎤⎦ = μ
[
∇V + (∇V)T− 2

σ

3
¯̄I
]

= μ

⎡⎢⎢⎢⎢⎢⎣
2
∂u

∂x
−2

σ

3

∂u

∂y
+
∂v

∂x

∂u

∂z
+
∂w

∂x

· 2
∂v

∂y
−2

σ

3

∂v

∂z
+
∂w

∂y

· · 2
∂w

∂z
−2

σ

3

⎤⎥⎥⎥⎥⎥⎦ (1.22)

where σ ≡ ∇ ·V =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
(1.23)

The contribution of the velocity divergence σ (also called the dilatation rate) is subtracted to make the stress
tensor have zero trace, τxx+τyy+τzz = 0. This zero-trace assumption is known as Stokes’s Hypothesis [3].

The pressure and viscous forces will also exert a work rate ẇS on the moving fluid

ẇS = (−pn̂+ ¯̄τ · n̂) ·V = −pV· n̂ + V· ¯̄τ · n̂ (1.24)

which has units of power per unit area. Unlike the power per unit volume rate ẇV given by (1.20), this ẇS

is not an unambiguous field quantity since it is associated with some arbitrary surface whose orientation is
specified by its normal vector n̂.

Fourier’s Law of heat conduction assumes that the conductive heat flux vector q̇ is proportional to the heat
conductivity k and the temperature gradient. This is analogous to the Newtonian viscous stress model, and
is valid for most common solids and fluids, including air. For perfect gases the q̇ vector can also be given
via the static enthalpy gradient and viscosity via the Prandtl number. Its component q̇S along the normal of
some arbitrary surface is the heat rate per unit area flowing through the surface.

q̇ = −k∇T = − μ

Pr
∇h (1.25)

q̇S = q̇ · n̂ = −k∇T · n̂ = − μ

Pr
∇h · n̂ (1.26)

1.3.4 Integral conservation laws
A general control volume placed in a flow-field is shown in Figure 1.6, with dV being an interior volume
element, and dS being a boundary surface area element with outward unit normal n̂.

n
V

ρ , p, ho

d
V

ρ o

f

q
.

ττ=, , q.

, e

control volume

d

Figure 1.6: Flow variables and geometric quantities involved in control volume analysis.

Integral mass equation

The law of conservation of mass asserts that the time rate of change of the total mass in the volume, plus the
net mass outflow rate through the surface of the volume, must sum to zero.∫∫∫

∂ρ

∂t
dV + ©

∫∫
ρV· n̂ dS = 0 (1.27)
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The second mass outflow term is seen to be the integral of the mass flux over the volume’s surface area.

Integral momentum equation

Similarly, the law of conservation of momentum, or equivalently Newton’s Third Law, asserts that the time
rate of change of the total momentum in the volume, plus the net momentum outflow rate through the surface
of the volume, must sum to the total force acting on the interior and the surface of the volume.∫∫∫

∂ ρV

∂t
dV + ©

∫∫
ρ(V· n̂)V dS =

∫∫∫
ρ f dV + ©

∫∫
−pn̂ dS + ©

∫∫
¯̄τ · n̂ dS (1.28)

Integral energy and enthalpy equations

The law of conservation of energy, or equivalently the First Law of Thermodynamics, asserts that the time
rate of change of total energy, plus its net outflow rate, equals the sum of heat and work sources q̇V+ẇV in
the interior, plus heat inflow and work −q̇S+ẇS at the boundary. The work terms are written out explicitly.∫∫∫

∂ ρeo
∂t

dV + ©
∫∫

ρV· n̂ eo dS =

∫∫∫
q̇V dV +

∫∫∫
ρ f ·V dV

− ©
∫∫

pV· n̂ dS + ©
∫∫

V· ¯̄τ · n̂ dS − ©
∫∫

q̇ · n̂ dS (1.29)

We then combine the lefthand energy-flux and righthand pressure-work terms together into an enthalpy flux
term on the left, and replace ρeo with ρho−p in the unsteady term, giving the alternative integral enthalpy
equation.

∫∫∫
∂(ρho−p)

∂t
dV + ©

∫∫
ρV· n̂ ho dS =

∫∫∫
q̇V dV +

∫∫∫
ρ f ·V dV

+ ©
∫∫

V· ¯̄τ · n̂ dS − ©
∫∫

q̇ · n̂ dS
(1.30)

1.4 Differential Conservation Equations

1.4.1 Divergence forms
Using Gauss’s Theorem for a general vector field quantity v(r),

©
∫∫

v · n̂ dS =

∫∫∫
∇ · v dV (1.31)

and setting v = ρV, the integral mass equation (1.27) can be restated in terms of only a volume integral.∫∫∫ [
∂ρ

∂t
+ ∇ · (ρV)

]
dV = 0 (1.32)

Since this must hold for any control volume, the integrand must necessarily be zero for every point in the
flow. The result is the divergence form of the differential mass equation.

∂ρ

∂t
+ ∇ · (ρV) = 0 (1.33)
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The same process applied to the integral momentum and enthalpy equations gives their corresponding di-
vergence differential forms.

∂(ρV)

∂t
+ ∇ · (ρVVT ) = ρ f − ∇p + ∇ · ¯̄τ (1.34)

∂(ρho−p)

∂t
+ ∇ · (ρV ho) = q̇V + ρ f ·V + ∇ · (¯̄τ ·V) − ∇· q̇ (1.35)

1.4.2 Convective forms
Combining {momentum equation (1.34)} − V{mass equation (1.33)} and simplifying produces the con-
vective form of the momentum equation,

ρ
DV

Dt
≡ ρ

∂V

∂t
+ ρV · ∇V = ρ f − ∇p + ∇ · ¯̄τ (1.36)

where
D( )

Dt
≡ ∂( )

∂t
+ V · ∇( ) (1.37)

is the substantial derivative, which is the rate of change of any field quantity ( ) as observed by a fluid
element moving with velocity V, as shown in Figure 1.7.

t + Δt

x x

t

f +
9

f9
t

tΔ
f + tΔ

f

yy

V moving material elementV tΔ

f
t

D
D

Figure 1.7: The substantial derivative Df/Dt gives rate of change of field quantity f (r,t) as felt by
material element moving at V. The local derivative ∂f/∂t is rate of change at a fixed point r.

Combining {enthalpy equation (1.35)}−ho{mass equation (1.33)} and simplifying produces the convective
form of the enthalpy equation.

ρ
Dho
Dt

≡ ρ
∂ho
∂t

+ ρV · ∇ho =
∂p

∂t
+ q̇V + ρ f ·V + ∇ · (¯̄τ ·V) − ∇· q̇ (1.38)

The mass, momentum, and enthalpy equations above, either in the divergence or convective forms, are
collectively called the Navier-Stokes equations, although historically this term was originally first given to
only the momentum equation (1.36) in its incompressible form, which will be considered in Section 1.8.

1.4.3 Surface boundary conditions
The appropriate boundary conditions for a viscous flow at a solid surface are the no-slip condition on V,
and either a temperature condition or a heat-flux condition on h.

V = 0 (on solid fixed surface) (1.39)

either h = cp Tbody (on surface with known temperature) (1.40)

or q̇ · n̂ = 0 (on surface at thermal equilibrium with fluid) (1.41)

For the idealization of an inviscid flow, the appropriate solid surface boundary condition is the following
flow-tangency condition on V. No solid-surface boundary condition required for the temperature.

V · n̂ = 0 (on solid fixed surface) (1.42)
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1.5 Units and Parameters

1.5.1 Unit systems
The quantitative description of any physical system, such as a fluid flow, requires using some set of units.
Two alternative sets of units, compared in Figure 1.8, can be used to describe any one given situation.

• Standard Units. Examples are m, s, kg (SI), or ft, s, slug (English). These are universally known,
and hence are most convenient for describing a specific physical object, and also for recording raw
experimental data.

• Natural Units (or Scales). Generic names are �ref , Vref , ρref , etc. Specific examples are c (chord), V∞
(freestream speed), ρ∞ (freestream density). These are most convenient for theoretical work, and for
presenting reduced experimental data. Table 1.1 lists the scales which appear in aerodynamic flows.

x m

x

z u = 12 m/s

V = 10 m/s

ν = 1.5   10
−5

m /s2

x
x

z u

V

ν

= 1.0 ref

= 3.0   10 ref ref
= 0.4 ref

= 1.2 V

V

V

ref

Standard Units

Natural Units V

= 0.2

−6
V = 10 m/sref

ref m= 0.5

refref

x
x

z u

ν

= 1.0

= 3.0   10 = 0.4

= 1.2
−

−

−

−

−

− −6

V

Nondimensional Variables

(m, s)

(           ),

Figure 1.8: Aerodynamic flow-field described in standard units, and alternatively in natural units.
The natural units for this case are chosen to be the chord �ref=c=0.5m, and the freestream velocity
Vref=V∞=10m/s. Using non-dimensional variables is equivalent to using natural units.

Table 1.1: Physical parameters, or scales, of aerodynamic flows. Scales in bottom block are relevant
only for compressible flows. Units are: length l, time t, mass m, temperature θ.

Scale Units Typical specific choice

�ref length l c airfoil chord
Vref velocity l/t V∞ freestream speed
ρref density m/l3 ρ∞ freestream density
μref viscosity m/lt μ∞ freestream viscosity
aref speed of sound l/t a∞ freestream speed of sound
kref heat conductivity ml/t3θ k∞ freestream value
cp heat capacity l2/t2θ cp freestream value (∼ constant)
γ ratio of specific heats — γ freestream value (∼ constant)

The absolute reference pressure and temperature pref , Tref have been omitted from Table 1.1 because for
ideal gases these are effectively redundant. Specifically, they can be defined from the other scales via the
ideal-gas, speed of sound, and caloric relations.

pref ≡ ρref a
2
ref (1.43)

Tref ≡ a2ref/cp (1.44)
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Such derived-scale definitions only need to have the same dimensions. They do not need to be equalities,
as in p= ρa2/γ and T = a2/(γ−1)cp. This allows the apparently missing γ and γ−1 factors to be omitted
from the pref and Tref definitions above.

1.5.2 Non-dimensionalization
Non-dimensionalization can be viewed as the process of converting from standard to natural units. We can
define all coordinates and field variables in terms of dimensionless variables (̄ ) and the various natural units
or scales listed in Table 1.1.

t = t̄ �ref/Vref
r = r̄ �ref
V = V̄ Vref
ho = h̄o a

2
ref

ρ = ρ̄ ρref
p = p̄ ρrefV

2
ref

μ = μ̄ μref

k = k̄ kref

Substituting these into the compressible mass, momentum, total enthalpy, and ideal-gas state equations
(1.33), (1.36), (1.38), (1.13), gives the corresponding dimensionless equations. The body force f and volume
heating q̇V are omitted here, since they are not relevant in typical aerodynamic flows.

∂ρ̄

∂t̄
+ ∇̄ ·

(
ρ̄V̄

)
= 0 (1.45)

ρ̄
∂V̄

∂t̄
+ ρ̄ V̄ · ∇̄V̄ = −∇̄p̄ +

1

Reref
∇̄ · ¯̄τ (1.46)

ρ̄
∂h̄o
∂t̄

+ ρ̄ V̄ · ∇̄h̄o = M2
ref

∂p̄

∂t̄
+

M2
ref

Reref
∇̄ ·

(
¯̄τ · V̄

)
− 1

RerefPrref
∇̄ · q̇ (1.47)

p̄ =
γ−1
γ

ρ̄

(
h̄o
M2

ref

− 1

2

∣∣V̄∣∣2) (1.48)

Here ∇̄( ) = �ref∇( ) is the gradient in terms of r̄ derivatives, and ¯̄τ , q̇ are the non-dimensional viscous
stress tensor and heat flux vector, defined using μ̄, k̄, ∇̄V̄, ∇̄h̄o.

Equations (1.45)–(1.48) have the same form as their dimensional counterparts, except for the appearance
of four non-dimensional parameters formed with the reference scales, as summarized in Table 1.2. For
incompressible flows, discussed in more detail in Section 1.8, the enthalpy and state equations (1.47),(1.48)
are replaced by the simple relation ρ̄=constant. In this case, only (1.45),(1.46) are needed to fully determine
the V̄, p̄ fields and the resulting aerodynamic forces. Hence the Reynolds number is the only relevant
aerodynamic parameter for steady incompressible flows.

Table 1.2: Non-dimensional parameters of a viscous flow. Parameters in bottom block are relevant
only for compressible flows.

Parameter Common name

Reref ≡ ρrefVref�ref/μref Reynolds number
Mref ≡ Vref/aref Mach number
Prref ≡ cp μref/kref Prandtl number

γ ratio of specific heats

1.5.3 Unsteady-flow parameters
Nonuniform body motion, which will in general result in an unsteady flow, will have some time scale or
frequency associated with the motion. The unsteadiness is typically imposed on the flow via the boundary
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conditions, in particular the viscous no-slip condition (1.39) which takes on the following more general form
for a body which is moving with local velocity Ubody in some time-varying manner.

V = Ubody(t) (on solid moving surface) (1.49)

Consider for example a sinusoidal body motion

Ubody(t) = U1 sin(ωt) (1.50)

where ω is the motion frequency and U1 is some constant. The dimensionless form of (1.49) is

V̄ = Ū1 sin(Stref t̄ ) (1.51)

Stref ≡ ω�ref
Vref

(1.52)

where Stref is the Strouhal Number, also called the reduced frequency. This is an additional non-dimensional
parameter which would need to be added to Table 1.2 for this unsteady flow case. Unsteady flows will be
covered partly in Chapter 6, and in more detail in Chapter 7. The other chapters will focus on steady flows
where Ubody = 0.

1.5.4 High Reynolds number flows
Typical aerodynamic flows of interest have very large Reynolds numbers, or Reref � 1, when based on a
typical body dimension and freestream velocity and viscosity. Because the viscous-stress and heat conduc-
tion terms involving ¯̄τ and q̇ in equations (1.46),(1.47) are scaled by 1/Reref , these terms must therefore
be negligible over most of the flow-field. The exception occurs very close to a body surface where V→ 0

because of the no-slip condition. Here, in the momentum equation (1.46) only ∇̄p̄ remains to balance the
viscous term, so the latter must remain significant sufficiently close to a wall. The result is that the action
of viscosity and heat conductivity is confined to boundary layers and wakes, collectively termed the “shear
layers” or “viscous regions.”

The viscous regions will be examined in much more detail in Chapters 3 and 4. For now, it will suffice to
say that at the high Reynolds numbers of typical aerodynamic flows, the viscous regions, distinguished by
significant ¯̄τ and q̇, are very thin compared with the body size, as sketched in Figure 1.9. This allows the
assumption that the outer flow is inviscid, which is the basis of most aerodynamic models.

Reref 10 Reref 10 Reref 103 5 7

ττ=
q.

= 0
= 0

Small insect Model airplane Full−size airplane

ττ=
q.

= 0
= 0

ττ=
q.

= 0
= 0

Figure 1.9: Typical aerodynamic flows with large Reynolds numbers have thin boundary layers and
wakes (viscous regions) compared to the body dimension. The outer flow is effectively inviscid.

1.5.5 Standard coefficients
For the description of aerodynamic flows, a convenient non-dimensional form of the pressure is the pressure
coefficient Cp. This is equivalent to the dimensionless pressure variable p̄ used in Section 1.5.2, except
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that Cp is shifted by some reference pressure pref , and its normalizing dynamic pressure qref contains the
traditional factor of 1

2 .

Cp ≡ p− pref
qref

, qref ≡ 1
2ρrefV

2
ref (1.53)

In external aerodynamics applications, the reference quantities are normally chosen to correspond to freestream
flow, ρref = ρ∞, Vref = V∞, pref = p∞,

Cp =
p− p∞

q∞
, q∞ ≡ 1

2ρ∞V 2
∞ (1.54)

so that in the freestream we have Cp = 0. Since Cp measures the deviation of the pressure from pref , it is
unaffected by any constant offset in all the pressures.

The skin friction coefficient, which is a non-dimensional wall shear stress, is normalized the same way.

Cf ≡ τw
q∞

(1.55)

An alternative normalization which uses the local dynamic pressure at a specific surface location gives the
local skin friction coefficient cf , which is more natural in boundary layer theory and will be treated in
Chapter 4.

Dimensionless coefficients which quantify aerodynamic forces and moments are also extensively used in
aerodynamics. These will be introduced in Chapter 5.

1.6 Adiabatic Flows

For a typical aerodynamic flow we have

• ∂( )/∂t = 0 , (steady flow)

• q̇V = 0 , (no volume heating)

• f ·V 	 0 , (volume work negligible)

• ¯̄τ 	 0 , (negligible viscous stress outside of viscous layers)

• q̇ 	 0 , (negligible heat conduction outside of viscous layers)

in which case the convective enthalpy equation (1.38) reduces to

Dho
Dt

= 0 (1.56)

→ ho = constant = ho∞ (1.57)

so that wherever the above conditions are met, then ho is constant and equal to its upstream value.

The requirements ¯̄τ 	0 and q̇	0 seem to preclude viscous regions from having a constant ho. This is true,
but somewhat overly restrictive. Consider applying only the first three adiabatic-flow assumptions above to
the integral enthalpy equation (1.30), and retaining the surface viscous and heat conduction terms.

©
∫∫

ρ(ho−ho∞)V· n̂ dS = ©
∫∫

V· ¯̄τ · n̂ dS − ©
∫∫

q̇ · n̂ dS (1.58)

In addition, ho was replaced by ho−ho∞ as permitted by the steady mass equation ◦
∫∫

ρV · n̂ dS = 0. The
first viscous shear integral on the right vanishes if either V=0 as on a solid wall, or ¯̄τ =0 as on the outer
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boundary. The second conduction integral vanishes if q̇=0 as on an insulated (not heated or cooled) wall,
and also on the outer boundaries. These conditions are met in most typical steady aerodynamic flows whose
walls have come to temperature equilibrium with the fluid. For these flows we then have:

©
∫∫

ρ(ho−ho∞)V· n̂ dS = 0 (steady flows with insulated walls) (1.59)

Hence, viscous stresses and heat conduction cannot change the net flux of total enthalpy out of the flow-
field, but can only redistribute it within the flow, and in particular within the thin viscous layers, as shown in
Figure 1.10. Therefore, steady viscous aerodynamic flows with insulated walls and no volume heat or work
addition do have ho = ho∞ in a mass-flow averaged sense.

ho

n n

ττ=

V

q
.

Δ. .V

Δ.
= 0

= 0q
. = 0

no volume heating

ρ h h−( )o o = 0
h h−( )o oρ

+

−q
. . n = 0

fixed, insulated walls

V
V. n

=V 0

d

Figure 1.10: Viscous stress work V · ¯̄τ and heat conduction q̇ can redistribute the total enthalpy
within a viscous layer, but they cannot change the net total enthalpy flux. This can only be changed
by volume heating q̇V , nonzero wall heat flux q̇ · n̂, or viscous work V· ¯̄τ · n̂ by a moving wall.

A real aircraft flow-field which includes the propulsive elements will have heat addition via the q̇V or q̇ · n̂
terms as in a turbine combustor, and will also have work addition via the ∂p/∂t and V· ¯̄τ · n̂ terms due to a
moving propeller or fan. In that case the mass-averaged ho leaving any control volume enclosing the aircraft
will exceed ho∞ , but this excess is confined to the engine exhaust and propulsive jet.

1.7 Isentropic Flows

1.7.1 Requirements for isentropy
The specific entropy change ds is defined by the Gibbs relation (1.60), or its equivalent enthalpy form (1.61).

T ds ≡ de + p d(1/ρ) (1.60)

T ds = dh − (1/ρ) dp (1.61)

Applying these changes d( ) to a particular fluid element as it moves during some time interval dt, we have
d( )/dt = D( )/Dt. The Gibbs relation (1.61) then becomes a rate equation for the entropy.

T
Ds

Dt
=

Dh

Dt
− 1

ρ

Dp

Dt

or T
Ds

Dt
=

Dho
Dt

−
D 1

2V
2

Dt
− 1

ρ

Dp

Dt
(1.62)

Combining {enthalpy eq.(1.38)} −V· {momentum eq.(1.36)} produces

Dho
Dt

−
D 1

2V
2

Dt
=

1

ρ

Dp

Dt
+ (¯̄τ · ∇) ·V − ∇ · q̇ + q̇V (1.63)
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which when added to (1.62) gives an alternative expression for the entropy’s material rate of change.

T
Ds

Dt
= (¯̄τ · ∇) ·V − ∇ · q̇ + q̇V (1.64)

Wherever all three terms on the righthand side are negligible, we have

T
Ds

Dt
= 0 (1.65)

→ s = constant (1.66)

so that flow regions which are both inviscid and adiabatic must also be isentropic. This is the typical situation
outside the viscous layers and without combustion present.

1.7.2 Isentropic relations

Setting ds = 0 in the Gibbs relation (1.61), assuming a calorically-perfect gas with constant cp, and using
the ideal gas law (1.13), gives the following three differential equations.

dp

p
= γ

dρ

ρ
=

γ

γ−1
dh

h
(1.67)

These can be integrated to give the three isentropic relations,

p2
p1

=

(
ρ2
ρ1

)γ

=

(
h2
h1

)γ/(γ−1)

(1.68)

where ( )1 and ( )2 are any two states along a particle pathline which is unaffected by viscous stress, heat
conduction or addition, or shock losses. For regions whose streamlines are isentropic all the way from
far-upstream, points 1 and 2 do not need to lie on the same streamline, as indicated in Figure 1.11.

1 2

(freestream)

viscous region

shock

shock wakestreamline

Figure 1.11: Valid and invalid paths for the isentropic relations (1.68) between any two points in an
aerodynamic flow. In the the isentropic region outside of shock wake and viscous regions the path
is arbitrary, since all points there can be also connected with the single freestream state.

In steady or unsteady external flows, a common choice for state 1 is the freestream state ( )∞, and for state
2 is the state at any point (r, t) in the flow outside of viscous layers or shock wakes, as shown in the upper
left of Figure 1.11.

p(r,t)

p∞

=

(
ρ(r,t)

ρ∞

)γ

=

(
h(r,t)

h∞

)γ/(γ−1)

(1.69)

This uniquely relates all the thermodynamic variable fields. These relations, when applicable, can be used
as replacements for the energy equation or the streamwise component of the momentum equation.
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1.7.3 Speed of sound

As derived by Batchelor [2], the speed of sound a is given by

a2 =
∂p

∂ρ

∣∣∣∣
s=const

which can be immediately determined from the isentropic differential relation (1.67).

a =

√
γp

ρ
=

√
γRT =

√
(γ−1)h (1.70)

1.7.4 Total pressure and density

Consider a hypothetical isentropic stagnation process shown in Figure 1.12, where the flow at any one point
is isentropically brought to the stagnation state which has V = 0.

Local flow quantities Hypothetical local stagnation process

hypothetical
obstruction

1

p
ρ
V

h p
ρ

o

o

= 0

hop
ρ
V

h
2

stagnation state
V

Figure 1.12: Isentropic stagnation process from local state 1, to a hypothetical stagnation state 2
denoted by ( )o with V = 0. This could actually be done by placing a small obstruction in the flow.

Applying the general isentropic relations (1.68) to this process we set p1 = p and h1 = h to be the actual
static values at the point, and then set h2 =ho = h + 1

2V
2, which would be the enthalpy at the stagnation

state since the total enthalpy cannot change. The corresponding p2 is then defined as the local total pressure,

po ≡ p

(
ho
h

)γ/(γ−1)

= p

(
1 +

1

2

V 2

h

)γ/(γ−1)

= p

(
1 +

γ−1
2

M2

)γ/(γ−1)

(1.71)

where M is the local Mach number.

M2 ≡ V 2

a2
=

V 2

(γ−1)h =
ρV 2

γ p
(1.72)

The total density is defined the same way.

ρo ≡ ρ

(
ho
h

)1/(γ−1)

= ρ

(
1 +

1

2

V 2

h

)1/(γ−1)

= ρ

(
1 +

γ−1
2

M2

)1/(γ−1)

(1.73)

These po and ρo are therefore the hypothetical pressure and density at any flow-field point that would result
if the enthalpy at that point was isentropically brought to h=ho, or equivalently to the state with V =0. For
this reason po and ρo are also alternatively called the stagnation pressure and stagnation density.

In aerodynamic flows where the po variation within the flow-field is of particular interest, such as flows with
propulsive elements, a convenient non-dimensional form of the total pressure is the total pressure coefficient.

Cpo =
po − po∞

q∞
(1.74)

In the clean external flow outside viscous layers or propulsive jets we have po=po∞ and hence Cpo=0.
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1.8 Low Speed and Incompressible Flows

By considering the governing equations and definitions developed earlier, we can estimate the following
typical changes Δ( ) of various quantities along a streamline, or more precisely along a particle path.

From ideal gas law (1.13): γ Δp 	 (γ−1) (hΔρ + ρΔh) (1.75)

From momentum equation (1.36): Δp 	 −ρV ΔV (1.76)

From total enthalpy definition (1.18): Δh 	 Δho − V ΔV (1.77)

Eliminating Δp between (1.75) and (1.76), eliminating Δh using (1.77), and noting that V 2/h = (γ−1)M2

gives the fractional density change only in terms of fractional V and ho changes.

Δρ

ρ
	 −M2 ΔV

V
− Δho

h
(1.78)

A low speed flow is defined as one with a negligibly small Mach number everywhere.

M2 � 1 (low speed flow) (1.79)

If in addition the flow is adiabatic so that ho 	 constant and hence Δho=0, then (1.78) implies

Δρ

ρ
� 1

or ρ 	 constant along particle path, (1.80)

which constitutes an incompressible flow. Figure 1.13 compares typical density variations along a streamline
near an airfoil in high speed and low speed flows.

ρρ/

1

0

ρΔ ρ/

ρρ/

1

0

ρΔ ρ/

High speed flow M~ 2ρΔ ρ/ = O(1) M~ 2ρΔ ρ/Low speed flow << 1

Figure 1.13: In an adiabatic flow, fractional density variations Δρ/ρ scale as M2. In the low speed
flow case M2 � 1 this implies a nearly constant ρ equal to the freestream value ρ∞.

For typical aerodynamic flows where the far-upstream density is uniform, the incompressibility result (1.80)
becomes the more general statement that the density is constant everywhere in the flow, and equal to the
freestream value.

ρ 	 constant = ρ∞ (incompressible aerodynamic flow) (1.81)

For adiabatic low speed flow where Δho/h 	 0, relation (1.77) in addition indicates

Δh

h
=

Δho
h

− (γ−1)M2 ΔV

V
� 1

or h 	 constant (1.82)



Physics of Aerodynamic Flows 17

so such flows are also nearly isothermal, and therefore the viscosity μ is nearly constant everywhere. In this
case the vector identity

∇ ·
[
∇a+ (∇a)T

]
= ∇2a + ∇ (∇ · a) (1.83)

together with σ = ∇ ·V = 0, which is the consequence of mass conservation and ρ=constant, can be used
to simplify the viscous momentum term in (1.34) or (1.36) to a Laplacian of the velocity.

∇ · ¯̄τ = ∇ ·
{
μ
[
∇V+ (∇V)T − 2

σ

3
¯̄I
]}

= μ∇2V (1.84)

Overall, the continuity and momentum equations simplify to the incompressible Navier Stokes equations

∇ ·V = 0 (1.85)

∂V

∂t
+ V · ∇V = f − ∇p

ρ
+ ν∇2V (1.86)

where ν≡μ/ρ is the kinematic viscosity. The energy and state equations decouple and are no longer needed.

1.9 Vorticity Transport and Irrotationality

The behavior of vorticity will be examined by formally taking the curl of the momentum equation (1.36).
The manipulations will use the following identities, which are valid for any vector fields a and b.

∇(a · b) = a · ∇b + b · ∇a + a× (∇× b) + b× (∇× a) (1.87)

∇× (a× b) = a∇ · b − b∇ · a + b · ∇a − a · ∇b (1.88)

1.9.1 Helmholtz vorticity transport equation
Setting a = b = V in identity (1.87) gives

1

2
∇(V·V) = V · ∇V + V× ω (1.89)

ω ≡ ∇×V (1.90)

where ω is the vorticity. Using (1.89) to replace the V · ∇V term in the momentum equation (1.36) puts it
into the following alternative form.

∂V

∂t
+

1

2
∇(V·V) − V × ω = f − ∇p

ρ
+

∇ · ¯̄τ
ρ

(1.91)

We now take the curl ∇× [equation (1.91)], use the identity ∇×∇( ) = 0, and note that the curl commutes
with the ∂( )/∂t operation. The body force field f is also assumed irrotational as is typical, so that ∇×f = 0.

∂ω

∂t
− ∇× (V × ω) = −∇

(
1

ρ

)
×∇p + ∇×

(
∇· ¯̄τ
ρ

)
(1.92)

Next we set a = V and b = ω in identity (1.88) which gives

∇× (V × ω) = −ρω
D(1/ρ)

Dt
+ ω · ∇V − V · ∇ω (1.93)
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where the convective mass equation

1

ρ

Dρ

Dt
= −ρ

D(1/ρ)

Dt
= ∇ ·V

and the identity ∇ · ω = ∇ · (∇×V) = 0, have been used. Substituting (1.93) in (1.92), dividing through
by ρ, and combining and rearranging terms finally gives the Helmholtz vorticity transport equation, with its
simpler incompressible form resulting from ρ and μ being constant.

D

Dt

(
ω

ρ

)
=

ω

ρ
· ∇V +

∇ρ×∇p

ρ3
+

1

ρ
∇×

(
∇· ¯̄τ
ρ

)
(1.94)

Dω

Dt
= ω · ∇V + ν∇2ω (incompressible) (1.95)

The baroclinic source term ∇ρ×∇p in the compressible Helmholtz equation (1.94) can cause vorticity to
appear wherever there are density and pressure gradients present. However, in isentropic flow where the
viscous term is negligible the isentropic p(ρ) relation (1.69) holds, so here the p and ρ gradients are parallel

∇p =
dp

dρ
∇ρ = γ

p

ρ
∇ρ (1.96)

and therefore the baroclinic term vanishes since ∇ρ×∇p ∼ ∇ρ×∇ρ = 0.

The term ω · ∇V on the righthand sides represents vortex tilting and vortex stretching, the latter causing a
rotating fluid’s vorticity to intensify when the rotating fluid is stretched by the components of the velocity
gradient matrix ∇V which are parallel to ω itself. However, if ω = 0 to begin with, then this term is
disabled, since there is no vorticity to stretch or tilt.

The Helmholtz vorticity equation (1.94) or (1.95) simplifies greatly for most aerodynamic flows. These
typically have uniform flow and hence ω=0 upstream, and their viscous stresses are negligible outside of
viscous layers and outside of shocks. In these circumstances (1.94) gives

D

Dt

(
ω

ρ

)
= 0 (1.97)

→ ω = 0 (1.98)

with the conclusion being that initial irrotationality persists downstream outside of the viscous layers and
shock wakes. These are the same requirements as those for isentropy, discussed earlier and shown in Fig-
ure 1.11. Hence we can further conclude that flows which are irrotational are also isentropic, as illustrated
in Figure 1.14.

s = constant ←→ ω = 0

shock

shock wake
ω = 0ω

= const.s

viscous region

ω = 0ω
= const.s

Figure 1.14: Isentropic flow regions are also irrotational, and vice versa.

Irrotationality of the velocity field has great implications for flow-field representation and modeling, which
will be treated in Chapter 2. It also enables the various Bernoulli relations for the pressure, considered next.
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1.9.2 Crocco relation
The d( ) differentials in the Gibbs relation (1.61) can be taken along a dx interval and then divided by dx to
convert them to partial derivatives.

T
∂s

∂x
=

∂h

∂x
− 1

ρ

∂p

∂x

Repeating this along dy and dz intervals, and adding the three results as vector components, gives the
gradient form of the Gibbs relation.

T ∇s = ∇h − ∇p

ρ

= ∇ho − 1

2
∇(V·V) − ∇p

ρ
(1.99)

Combining this with the alternative form of the momentum equation (1.91) gives

T ∇s = ∇ho +
∂V

∂t
− V× ω − f − 1

ρ
∇ · ¯̄τ (1.100)

which for steady inviscid flow without body forces simplifies to the Crocco relation.

T ∇s = ∇ho − V× ω (steady, inviscid) (1.101)

For the steady adiabatic case this explicitly confirms the equivalence between isentropy and irrotationality
deduced in the previous section. It is also useful in many applications in which one of the three terms in
(1.101) is known explicitly, which then provides an explicit relation between the two remaining terms.

1.9.3 Bernoulli equation
If the flow is irrotational, then the velocity must be the gradient of a velocity potential φ(r,t).

V = ∇φ (1.102)

If f is the gravitational force per unit mass as is usually case, then we also have

f = −g∇z (1.103)

where g is gravity’s acceleration and z is the vertical height. With these assumptions, and also assum-
ing that the flow is effectively inviscid so ¯̄τ can be neglected, the alternative form of the compressible or
incompressible momentum equation (1.91) or (1.86) simplifies to

∇∂φ

∂t
+

1

2
∇(V 2) = −g∇z − ∇p

ρ
(1.104)

which can be integrated if we make suitable assumptions about the density ρ.

Incompressible Bernoulli equation

Assuming ρ=constant and integrating (1.104) gives the general Incompressible Bernoulli equation

∂φ

∂t
+

1

2
V 2 +

p

ρ
+ gz = C (1.105)
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p

zz

ρgz−

p p

p

p

ρgz− = const.

= const.

= const.

Figure 1.15: Overall pressure p decomposed into hydrostatic and dynamic components −ρgz+ p′.

where C is some integration constant. It is convenient to decompose the pressure p into a hydrostatic
pressure field −ρgz and a remaining part p′ associated with only the fluid motion, as shown in Figure 1.15.

p = −ρgz + p′ (1.106)

This effectively eliminates the gravity term from the Bernoulli equation (1.105).

∂φ

∂t
+

1

2
V 2 +

p′

ρ
= C (1.107)

From now on we will denote p′ simply as “p,” with the understanding that it really represents the deviation
from the known hydrostatic pressure −ρgz. The latter provides a buoyancy force equal to the displaced
fluid’s weight, which directly adds to the hydrodynamic force from p′ and surface viscous stresses.

Fbuoyancy = ©
∫∫

body
ρg z n̂ dS =

∫∫∫
body

ρg ẑ dV = ρg Vbody ẑ (1.108)

This buoyancy force is usually ignored, notable exceptions being lighter-than-air and underwater vehicles.

This pressure decomposition is not usable for the free-surface flows about surface water vehicles. Here the
overall true pressure −ρgz+p′ is imposed to be constant on the free surface as a boundary condition, which
then results in the generation of surface gravity waves with heights z. These waves influence the velocity
field, which in turn influences p′ and hence the wave shapes. Therefore, the hydrostatic and dynamic parts
of the pressure field are two-way coupled and cannot be treated separately.

For low-speed steady aerodynamic flows, the constant C in (1.107) is most conveniently defined from the
known freestream total pressure, giving the most familiar form of the Bernoulli equation.

p +
1

2
ρV 2 = p∞ +

1

2
ρV 2

∞ ≡ po∞ (1.109)

In this case, the pressure coefficient definition (1.54) also reduces to a relatively simple form.

Cp = 1− V 2

V 2
∞

(1.110)

It must be stressed that the Bernoulli forms (1.109) and (1.110) apply only where the total pressure is equal
to the freestream value.
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Compressible Bernoulli equation

An alternative assumption for the density is to use the isentropic relation (1.69)

ρ = ρ∞

(
p

p∞

)1/γ

in which case (1.104) integrates to the compressible version of the general Bernoulli equation.

∂φ

∂t
+

1

2
V 2 +

a2∞
γ−1

(
p

p∞

)(γ−1)/γ
+ gz = C (1.111)

Dropping the gravity term as before, and using the freestream to evaluate the integration constant gives the
isentropic unsteady pressure formula, with the steady form obtainable by dropping the ∂φ/∂t term.

p

p∞

=

[
1 +

γ−1
2

M2
∞

(
1− V 2

V 2
∞

− 2

V 2
∞

∂φ

∂t

)]γ/(γ−1)
(1.112)

1.10 Aerodynamic Flow Categories

The various types of high Reynolds number aerodynamic flows can be categorized by the Venn diagram
shown in Figure 1.16. All have mostly-irrotational flow with relatively thin boundary layers and wakes.
Hence, much of the book will focus on potential flow modeling and prediction. Most aerodynamic bodies
are also adiabatic, so the treatment of viscous flows here will focus on adiabatic boundary layers.

Adiabatic
Low Speed

IncompressibleM << 12
= 0q

.

ρ = constant

Incompressible potential flows

Low−speed isothermal BLs

Compressible potential flows

Isentropic, Irrotational

High speed BLs
without heat transferLow speed BLs

with heat transfer

= 0q n.v
.

High Speed Boundary Layers with heat transfer

ωω = 0

Viscous  (High Reynolds Number)

Figure 1.16: Aerodynamic flow categories. This book will focus primarily on potential flows and
low speed adiabatic boundary layers, which are shown shaded.





Chapter 2

Flow-Field Modeling
This chapter will address the specification or description of the velocity field of an aerodynamic flow, in
terms of its associated source and vorticity fields. Effective simplifications and idealizations of the flow-
field will also be developed within this flow description approach.

2.1 Vector Field Representation Methods
The majority of computational methods for fluid flow prediction use one of two different methods to define
the velocity field V(r). These are sketched in Figure 2.1, and described as follows.

1) A grid method where discrete values Vij are defined at the nodes of a grid which fills the entire flow-field.
A suitable interpolation scheme is used to interpolate these values to obtain V(r) at any position vector point
r within the grid. This is the approach used by modern Computational Fluid Dynamics (CFD) methods
which solve the Full-Potential equation, the Euler equations, or the Navier-Stokes equations.

2) A singularity method which uses the velocity fields of source and vortex sheet strengths λi,γi which
are defined in limited regions of the flow-field, typically at solid surfaces or other boundaries. Weighted
integration or summation over these source and vortex strengths, together with an additional freestream
velocity V∞, is used to obtain V(r) at any point in the flow-field. This approach is used by Vortex Lattice
and Panel methods for potential flows.

Vij

V(  )r V(  )r

λ γ, γi i

Singularity  MethodGrid  Method

V

Figure 2.1: Grid and singularity methods used to represent a velocity vector field V(r).

This chapter will focus on the singularity method 2). In addition to being the basis of Vortex Lattice and
Panel flow calculation methods, this flow-field representation is also the basis of many useful engineering
approximations, including the formulation of outer boundary conditions in grid-based CFD methods. It also
provides an intuitive and physical understanding of aerodynamic flows and general flow behavior, and hence
is useful even if the grid-based CFD methods are being employed.
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2.2 Velocity / Vorticity-Source Duality

The sheet strengths λ and γ in Figure 2.1 will be shown to be closely related to the source density σ and
vorticity ω distributions, which can be obtained from the velocity field by taking its divergence and curl.

σ(r) = ∇ ·V (2.1)

ω(r) = ∇×V (2.2)

Conversely, the velocity field can be obtained from the source and vorticity fields via definite volume inte-
grals over the entire flow-field. This in effect reverses the divergence and curl operations, as discussed by
Batchelor [2] in some detail. These reciprocal operations are illustrated in Figure 2.2, and given as follows.

V(r) = Vσ + Vω + Vb (2.3)

where Vσ(r) ≡ 1

4π

∫∫∫
σ(r′)

r−r′

| r−r′|3
dx′ dy′ dz′ (2.4)

Vω(r) ≡ 1

4π

∫∫∫
ω(r′)× r−r′

| r−r′|3
dx′ dy′ dz′ (2.5)

Vb = V∞ (for unbounded external flow) (2.6)

=
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Figure 2.2: A flow velocity field V(r) shown on the left can be used to define the source and vorticity
fields σ(r) and ω(r) shown on the right, and vice versa. Boxes contain reciprocal conversion relations
from one description to the other, with Vσ and Vω defined by equations (2.4) and (2.5).

The infinitesimal volume element dx′dy′dz′ at the integration point location r′ with source density σ(r′)

and vorticity ω(r′) has contributions to the total V(r) at the field point at r. The source contribution dVσ is
parallel to the connecting vector (r−r′), whose explicit definition and magnitude are as follows.

r−r′ = (x−x′) x̂ + (y−y′) ŷ + (z−z′) ẑ (2.7)

| r−r′| =
√

(x−x′)2 + (y−y′)2 + (z−z′)2 (2.8)

The vorticity contribution dVω is perpendicular to both (r−r′) and ω.
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The last velocity component Vb in (2.3) is the part of V which has both zero divergence and zero curl
everywhere in the flow-field, and hence cannot be represented by σ or ω within the flow-field. In the typical
external aerodynamic flow extending to infinity, Vb is a constant field, and equal to the freestream velocity
as given by (2.6). In the more general case, such as flow near a wall or inside a wind tunnel, Vb is not a
constant, but it can be uniquely determined as follows.

Since ∇×Vb = 0, this velocity must be expressible as a gradient of some scalar potential function φb(r).

Vb = ∇φb (2.9)

Setting the divergence of this Vb to zero as required by its definition gives

∇ ·Vb = ∇ · (∇φb) = 0

∇2φb = 0 (2.10)

so that φb must satisfy the Laplace equation (2.10). This will have a solution everywhere inside the flow-field
if appropriate boundary conditions are specified on all the flow-field boundaries. The boundary conditions
are case-dependent, and some typical examples are given below.

φb = V∞ · r = u∞ x + v∞ y + w∞ z (at distant boundary) (2.11)

∂φb/∂n = − (Vσ +Vω) · n̂ (at solid-wall boundary) (2.12)

For simple flat internal-flow boundaries such as wind tunnel walls, Vb can be alternatively obtained using
the method of images. Many examples are given in Chapter 10.

It’s useful to note that the Vσ superposition integral (2.4) has the form

Vσ(r) =

∫∫∫
σ(r′) K(r−r′) dx′ dy′ dz′ (2.13)

K(r,r′) = K(r−r′) =
1

4π

r−r′

| r−r′|3
(2.14)

where K is the kernel function which is strictly geometric, in that it depends only on the coordinates of the
field point r and the integration point r′. More specifically, it depends only on the connecting vector r−r′

between the two points. The specific kernel function (2.14) can be interpreted as the velocity field V(r) of a
unit-strength point source located at r′.

2.3 Aerodynamic Modeling – Vorticity and Source Lumping

The general velocity field representation (2.3) via the source and vorticity fields is primarily conceptual,
since the volume integrals for the Vσ and Vω components are impractical to evaluate in numerical appli-
cations. However, the representation (2.3) can be approximated and greatly simplified by the process of
lumping, which is based on the approximation that the kernel function is constant along some small interval
of one of the s�n coordinates. This allows the source and vorticity volume distributions to be in effect con-
centrated into surfaces or sheets, and then possibly further concentrated into lines (or filaments), and then
possibly even points. This process, illustrated in Figure 2.3, is the basis of aerodynamic modeling.

Note that at each lumping stage the singularity geometry becomes simplified, but the resulting velocity field
becomes more singular and less realistic near the sheet, filament, or point (which is the origin of the name
singularity). However, sufficiently far away the actual and approximated velocity fields become the same.

The lumping operation uses the curvilinear s�n coordinates, defined such that s� lie on the surface of the
sheet, filaments, or points, and n is normal to this surface. For simplicity, the curvatures of the s�n coordinate
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lines are assumed to be sufficiently small so that they form a local effectively Cartesian system. A volume
element is then simply ds d� dn, and a surface element is ds d�, so that the Jacobian factors which should
appear in these elements are assumed to be unity and hence omitted for simplicity. This approximation does
not adversely affect the effectiveness of the lumping concept for most aerodynamic applications.
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Figure 2.3: Lumping of source and vorticity volume distributions into sheets and then lines. Source
lines can be further lumped into source points. The evaluation of the velocity at any field point r
then becomes progressively simplified. Lumping is the basis of aerodynamic modeling.

2.3.1 Sheets
In the first simplification stage we neglect the kernel function’s n dependence by assuming a representative
integration point r′(s,�,n) 	 r′(s,�,no) at some fixed no location, indicated in Figure 2.3. The simplified
kernel function can then be removed from the n integral, allowing the σ or ω distribution to be integrated or
lumped in n across the layer thickness from n1 to n2, thus defining the sheet strengths λ(s,�) and γ(s,�). The
volume integrals in the velocity superposition (2.3) then become the simpler surface integrals over the sheet
coordinates s and �, with r′(s,�) now denoting the integration points on the sheet.

Vσ(r) 	 Vλ(r) ≡ 1

4π

∫∫
λ

r−r′

| r−r′|3
ds d� ; λ(s,�) ≡

∫ n2

n1

σ(s,�,n) dn (2.15)

Vω(r) 	 Vγ (r) ≡ 1

4π

∫∫
γ× r−r′

| r−r′|3
ds d� ; γ(s,�) ≡

∫ n2

n1

ω(s,�,n) dn (2.16)

The resulting velocities Vλ and Vγ are now discontinuous across the sheets, but this does not cause any
problems in practice. Note also that outside the original source or vorticity volume, Vλ is very nearly the
same as the actual Vσ, and Vγ is very nearly the same as the actual Vω , as Figure 2.3 suggests. Sheets are
extensively used in aerodynamic modeling and computation, and will be discussed in more detail later.

2.3.2 Lines
The second lumping stage consists of dividing the s coordinate into some number of short intervals, and
assuming that r′(s,�) 	 r′(so,�) where so is some representative s value on each interval. We can then
integrate λ or γ across each interval from s1 to s2, thus defining the line or filament strengths Λ(�) or Γ(�).
Each surface integral then becomes a summation over a number of simpler line integrals along the remaining
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filament coordinate �, with r′(�) now denoting the integration points on the filament. Here we also assume
that � is chosen to be aligned locally with the γ vector direction, as indicated in Figure 2.3.

Vσ(r) 	 VΛ(r) ≡
∑
lines

1

4π

∫
Λ

r−r′

| r−r′|3
d� ; Λ(�) ≡

∫ s2

s1

λ(s,�) ds (2.17)

Vω(r) 	 VΓ(r) ≡
∑
lines

1

4π

∫
Γ× r−r′

| r−r′|3
d� ; Γ(�) ≡

∫ s2

s1

γ(s,�) ds (2.18)

The resulting velocity fields VΛ and VΓ defined above are now strongly singular at the filaments, varying
as |VΛ|, |VΓ| ∼ 1/Δr where Δr is the nearest distance to a filament. The magnitude of these singularities
depends on the width of the s intervals for the lumping integration and the resulting line spacing, which
can be chosen arbitrarily. A fine sheet subdivision into many weak filaments proportionally reduces the
singularities, giving a smoother velocity field at any given distance from the filament-approximated surface.

The vortex-filament velocity definition (2.18) can be simplified somewhat by applying the Helmholtz vortex
law [2] which states that the magnitude of Γ cannot change along the filament. In addition, since the �
coordinate was chosen to be aligned with γ, the lumped Γ must be parallel to the filament element vector
d� at each location. We can then convert the VΓ definition (2.18) into the familiar Biot-Savart integral.

Γ d� = Γ d� (2.19)

VΓ(r) =
∑
lines

Γ

4π

∫
d�× (r−r′)

| r−r′|3
(2.20)

Note that the integral itself is purely geometric, and can be evaluated without knowing the filament circula-
tion Γ a priori.

2.3.3 Points
The source filaments can be subjected to one more lumping step by dividing the � coordinate into some
number of intervals from �1 to �2, and lumping Λ(�) over each interval into a point-source strength Σ. The
filament integrals then become a sum of relatively simple algebraic expressions over the point sources.

Vσ(r) 	 VΣ(r) ≡
∑
points

Σ

4π

r−r′

| r−r′|3
; Σ ≡

∫ �2

�1

Λ(�) d� (2.21)

The resulting velocity field is now even more singular than for the filaments, varying as |VΣ| ∼ 1/Δr2

where Δr = | r−r′| is the distance to the point.

Vortex filaments could be lumped into point point vortices or “vortons” in the same manner as the source
filaments. However, in addition to having the |V| ∼ 1/Δr2 singularity, the resulting velocity field is not
exactly irrotational in the vicinity of each vorton. Hence, if perfect irrotationality is required away from the
singularities, then equations (2.20) and (2.21) constitute the simplest possible velocity field representation
via vortices and sources.

2.3.4 2D forms
This chapter has so far treated only the general three-dimensional case. All the concepts remain largely
unchanged in two dimensions. The main simplification in 2D is that the vorticity, vortex sheet strength, and
circulation vectors have only one component in the ŷ direction into the x-z plane, and hence can be treated
as scalars.

ω = ω ŷ

γ = γ ŷ

Γ = Γ ŷ

(2.22)
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The velocity superposition integrals then take on the following forms in two dimensions.

Vσ(r) =
1

2π

∫∫
σ(r′)

(r−r′)

| r−r′|2
dx′ dz′ (2.23)

Vω(r) =
1

2π

∫∫
ω(r′)

ŷ×(r−r′)

| r−r′|2
dx′ dz′ (2.24)

r−r′ = (x−x′) x̂ + (z−z′) ẑ (2.25)

| r−r′| =
√

(x−x′)2 + (z−z′)2 (2.26)

Their simplified lumped versions follow from the same lumping procedure as in 3D. The sheet coordinates
in the x-z plane are now sn, and � is into the plane and parallel to y.

Vλ(r) =
1

2π

∫
λ

(r−r′)

| r−r′|2
ds ; λ(s) ≡

∫ n2

n1

σ(s,n) dn (2.27)

Vγ (r) =
1

2π

∫
γ
ŷ×(r−r′)

| r−r′|2
ds ; γ(s) ≡

∫ n2

n1

ω(s,n) dn (2.28)

VΛ(r) =
∑
points

Λ

2π

r−r′

| r−r′|2
=

∑
points

Λ

2π

(x−x′)x̂+ (z−z′)ẑ

(x−x′)2 + (z−z′)2
(2.29)

VΓ(r) =
∑
points

Γ

2π

ŷ×(r−r′)

| r−r′|2
=

∑
points

Γ

2π

(z−z′)x̂− (x−x′)ẑ

(x−x′)2 + (z−z′)2
(2.30)

2.4 3D Vortex Sheet Strength Divergence Constraint

Although vortex sheets have many attractive properties for representing aerodynamic velocity fields, their
main drawback in 3D is that the vortex sheet strength γ is a vector whose components are not entirely
independent. The complication stems from the vorticity field having identically zero divergence due to its
curl definition.

∇ · ω = ∇ · (∇×V) = 0 (2.31)

Using the locally-cartesian s�n sheet coordinates, the resulting divergence of a lumped vortex sheet strength
γ can then be determined by lumping the divergence of the vorticity.∫ n2

n1

∇ · ω dn = 0 (2.32)∫ n2

n1

(
∂ωs

∂s
+

∂ω�

∂�
+

∂ωn

∂n

)
dn = 0

∂

∂s

∫ n2

n1

ωs dn +
∂

∂�

∫ n2

n1

ω� dn = 0

∂γs
∂s

+
∂γ�
∂�

= 0 (2.33)

or ∇̃ · γ = 0 (2.34)

where ∇̃ ≡ ŝ
∂

∂s
+ �̂

∂

∂�
(2.35)

The surface-gradient operator ∇̃ definition simply excludes the n̂ component. The integral
∫
∂ωn/∂n dn

vanished since the n1, n2 endpoints are assumed to be outside the vorticity layer where ωn = 0.
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Equation (2.34) is the key constraint on the γ vector. In effect, the γ vectors in the vortex sheet must
resemble the velocity vectors in 2D incompressible flow which also have zero divergence. Figure 2.4 shows
three vortex sheet strength γ(s,�) distributions. The second case has a nonzero (singular) divergence at one
isolated point, which requires a vortex filament to be attached at that point normal to the surface. The third
case is nonzero γ divergence everywhere which is impossible given the vorticity-lumping assumptions.

μ 

γ

μ does not existisolines

Δ. γ = 0γγ

μ isolines

Δ. γ = 0γ∼∼Δ. γ = 0γ∼
isolated vortex

(impossible vortex sheet)
everywhere(    )s,

(    )s, (    )s, (    )s,

except at vortex foot

branch cut

Figure 2.4: Various vortex sheet strength γ(s,�) distributions. Vortex normal to surface in middle
case shows up as branch cut in the μ distribution associated with γ. Rightmost case is impossible.

An effective way to ensure that γ has a zero surface-divergence is to introduce a scalar function μ(s,�), which
defines γ via μ’s surface gradient, rotated 90◦ about the surface unit normal.

γ = n̂× ∇̃μ (2.36)

or γs = −∂μ

∂�
, γ� =

∂μ

∂s

Note that any γ defined in this manner automatically has zero surface divergence

∇̃ · γ =
∂γs
∂s

+
∂γ�
∂�

= − ∂2μ

∂s ∂�
+

∂2μ

∂� ∂s
= 0

so that (2.33) ensures that ωn = 0. Conversely, if there is a point or line where concentrated vorticity is
shed with ωn �= 0, such as along the trailing edge of a lifting wing, then μ(s,�) must be discontinuous on a
branch cut extending from the point, as shown in Figure 2.4. Such a branch cut must be accounted for in any
calculation method which seeks to determine μ(s,�). In a case of a lifting wing, the branch cut is typically
placed all along the trailing edge from which vorticity is shed into the otherwise irrotational flow.

One conceptually useful interpretation of μ(s,�) is that it’s a streamfunction for γ(s,�), guaranteeing its zero
divergence just like the conventional streamfunction ψ(x,z) guarantees zero divergence of V(x,z) in two-
dimensional flow. And just as streamlines of V follow constant-ψ lines, the vortex lines parallel to γ follow
the constant-μ lines on the vortex sheet, as shown in Figure 2.4.

2.5 Equivalence of Vortex and Doublet Sheets
The vorticity streamfunction μ(s,�) can also be interpreted as the normal-doublet sheet strength. An area
element ds d� of the doublet sheet in effect has an infinitesimal 3D doublet of strength dKn = μ ds d�,
oriented along the normal direction. In two dimensions, the element ds of the sheet has an infinitesimal 2D
doublet of strength dκn = μ ds. The resulting velocity fields in 3D and 2D are

Vμ(r) =
1

4π

∫∫
μ(s,�)

[
n̂

| r−r′|3
− 3 n̂ · (r−r′)

r−r′

| r−r′|5
]
ds d� (3D) (2.37)

Vμ(r) =
1

2π

∫
μ(s)

[
n̂

| r−r′|2
− 2 n̂ · (r−r′)

r−r′

| r−r′|4
]
ds (2D) (2.38)
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which are the same as the Vγ (r) fields of the equivalent vortex sheets given by (2.16) and (2.24). This
equivalence can be verified with some effort by substituting γ = n̂×∇̃μ into (2.16) or (2.24) and integrating
by parts.

Figure 2.5 illustrates the doublet-sheet/vortex-sheet equivalence for 3D and 2D sheets. In general, a linearly-
increasing μ is equivalent to a constant-magnitude γ, and vice versa. At the edge of the doublet sheet, μ(s,�)

in effect has a step change to zero. Here ∇̃μ and the corresponding γ have an impulse, which is equivalent
to a vortex filament of strength Γ = μ along the sheet edge. Figure 2.6 shows the constant-strength doublet
sheet case.
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Figure 2.5: Equivalence between normal-doublet sheet and vortex sheet away from edges, for 3D
and 2D cases. The doublet and vortex sheets have the same velocity fields.
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Figure 2.6: Constant-strength normal-doublet sheet with edges, and the equivalent vortex filaments,
for 3D and 2D cases.

Because the elimination of the zero-divergence requirement for 3D vorticity is such a great simplification,
doublet sheets are heavily favored over vortex sheets in all common 3D panel methods. However, the zero-
divergence constraint does not appear in 2D, with the result that vortex sheets tend to be favored over doublet
sheets in 2D panel methods. For an extensive review and implementation details of various 2D and 3D panel
methods see Katz and Plotkin [4].

In the subsequent discussions and applications here, we will employ either vortex or doublet sheets as most
appropriate. In particular, constant-strength doublet panels which are equivalent to vortex rings will be used
for 3D configuration analyses in Chapters 5 and 6.



Flow-Field Modeling 31

2.6 Integral Velocity / Vorticity-Source Relations

Consider the volume flow rate V̇ outward through a closed surface, defined as the area integral of the normal
velocity component over the surface, as shown in Figure 2.7 on the left.

V̇ ≡ ©
∫∫

V · n̂ dS =

∫∫∫
inside
∇ ·V dV (2.39)

=

∫∫∫
inside
σ dx dy dz +

∫∫
inside
λ ds d� +

∫
inside
Λ d� + Σ ≡ Σinside (2.40)

The second form in (2.39) follows from Gauss’s theorem, for which the volume integral is evaluated over the
volume inside the surface. The alternative forms in (2.40) follow from the source density definition (2.1) and
the various lumped source sheet, line, and point definitions, and are evaluated over all the source singularities
present inside the volume bounded by the surface. The overall result is that V̇ for a closed surface is equal
to the sum of all the point sources or integrated volume, sheet, or line source distributions inside.
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Figure 2.7: Volume outflow V̇ through closed surface (left) is equal to the total integrated source
strength of all source density, sheets, filaments, and points inside. Circulation Γ̃ over closed circuit
(right) is equal to the total circulation of all vorticity, vortex sheets, and vortex filaments enclosed
or encircled by the circuit.

Next consider the circulation Γ̃ about a closed circuit, defined as the line integral of the tangential velocity
component around the circuit, indicated in Figure 2.7 on the right.

Γ̃ ≡
∮

V · dl =

∫∫
enclosed
(∇×V) · n̂ dS (2.41)

=

∫∫
enclosed

ω · n̂ dS +

∫
enclosed
γ · n̂ ds + Γ ≡ Γenclosed (2.42)

The second form in (2.41) follows from Stokes’s theorem, for which the area integral is understood to be
evaluated over any surface bounded by the contour, with n̂ being the unit normal on this surface. The
alternative forms in (2.42) follow from the vorticity definition (2.2) and the various lumped vortex sheet
and line definitions. The overall result is that the circuit circulation Γ̃ is equal to the total strength of all
the integrated vorticity, vortex sheets, and vortex filaments enclosed by the circuit. Any vortices outside the
circuit have no contribution to Γ̃.
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2.7 Velocity-Potential Integrals

2.7.1 3D potentials
The velocity fields of the various types of source distributions can be expressed in terms of their velocity
potentials, with Vσ=∇ϕσ, Vλ=∇ϕλ, etc. These are defined by the following superposition integrals.

ϕσ(r) =
1

4π

∫∫∫
σ(r′)

−1

| r−r′| dx
′ dy′ dz′ (2.43)

ϕλ(r) =
1

4π

∫∫
λ(s,�)

−1

| r−r′| ds d� (2.44)

ϕΛ(r) =
1

4π

∫
Λ(�)

−1

| r−r′| d� (2.45)

ϕΣ(r) =
Σ

4π

−1

| r−r′| (2.46)

There is no way to explicitly give the potential of 3D vortex sheets, but it is possible to do so for 3D doublet
sheets.

ϕμ(r) =
1

4π

∫∫
μ(s,�)

n̂ · (r−r′)

| r−r′|3
ds d� (2.47)

This is yet another advantage of using doublet sheets in lieu of vortex sheets.

It’s again useful to note that as in the general velocity expression (2.13), each potential expression has the
same form involving a kernel function. For example, (2.43) can be written as

ϕσ(r) =

∫∫∫
σ(r′) K(r−r′) dx′ dy′ dz′ (2.48)

K(r−r
′) =

1

4π

−1

| r−r′| (2.49)

where now the scalar kernel function K is the potential field ϕ(r) of a unit point source at r′.

2.7.2 2D potentials
The potentials of source distributions in 2D are given below.

ϕσ(x,z) =
1

2π

∫∫
σ(r′) ln | r−r′| dx′ dz′ (2.50)

ϕλ(x,z) =
1

2π

∫
λ(s) ln | r−r′| ds (2.51)

ϕΛ(x,z) =
Λ

2π
ln | r−r′| (2.52)

Unlike in 3D, the potentials of vortex sheets and vortex filaments in 2D can be given explicitly:

ϕω(x,z) =
1

2π

∫∫
−ω(r′) arctan

(
z−z′

x−x′

)
dx′ dz′ (2.53)

ϕγ (x,z) =
1

2π

∫
−γ(s) arctan

(
z−z′

x−x′

)
ds (2.54)

ϕΓ(x,z) = − Γ

2π
arctan

(
z−z′

x−x′

)
(2.55)
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−Γ/2
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Figure 2.8: Potential of a 2D vortex located at (x, z) = (0, 0). Branch cut accommodates the
potential jump of Γ. The sketch corresponds to a negative Γ.

One complication here is that the arctan( ) polar angle can contain some arbitrary multiple of 2π. This
requires introduction of a branch cut extending from the vortex point out to infinity in some direction, as
shown in Figure 2.8. The angle jumps by 2π and the potential jumps by Γ across the branch cut.

The branch cut also appears for a doublet sheet, which has the following potential in 2D.

ϕμ(x,z) =
1

2π

∫
μ(s)

n̂ · (r−r′)

| r−r′|2
ds (2.56)

However, the branch cut now is only on the doublet sheet itself. It does not need to extend to infinity like
with a vortex, unless the doublet sheet itself extends to infinity. Figure 2.9 compares the branch cuts of a
point vortex and a doublet sheet, the latter being equivalent to two point vortices of opposite sign.
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Figure 2.9: Potential of a 2D vortex of strength Γ on the left (same as in Figure 2.8), and of a
constant-strength 2D doublet sheet on the right which is equivalent to two equal and opposite vor-
tices ±Γ. For the doublet sheet, the branch cut is restricted to the sheet itself.

2.8 Physical Requirements

The velocity field V(r) description (2.3) via the σ and ω fields is purely mathematical, and in fact can be
used to represent any vector field whose divergence and curl are known. In the case of fluid flow, however,
physical requirements strongly dictate and frequently simplify the magnitudes and distributions of the σ and
ω fields. These physically-dictated simplifications, discussed in this section, are in fact what makes this
flow-field representation approach so effective in aerodynamics. Also discussed will be the flow categories
where the physical constraints do not provide significant simplification.
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2.8.1 Sources in incompressible flow
In the case of effectively-incompressible flow, the low-speed continuity equation (1.85) demands that σ and
hence λ, Λ, and Σ are all zero within the flow-field.

∇ ·V = 0

→ σ = λ = Λ = Σ = 0 (within flow-field) (2.57)

However, it is perfectly acceptable to have nonzero fictitious sources outside the physical flow-field, either
within a body or on a flow boundary. Figure 2.10 shows impermissible and permissible uses of sources to
represent an incompressible velocity field. The rightmost figure shows the typical use of image singularities
to represent the effect of a solid wall boundary.

Λ Λ

Λ

Not permitted Permitted

Permitted

λ

λ σ

Figure 2.10: Sources within an incompressible flow-field are not permitted by continuity. Fictitious
sources inside a body, on a boundary, or outside the physical flow-field are permissible.

2.8.2 Sources in compressible flow
In a compressible flow, with significant density variations, the source distribution σ within the flow-field
will in general be nonzero. This can be seen by computing σ using the steady continuity equation (1.33).

∇ · (ρV) = 0

ρ∇ ·V + ∇ρ ·V = 0

∇ ·V ≡ σ = −1

ρ
∇ρ ·V (2.58)

Hence, σ is nonzero wherever the density gradient has a component along the velocity vector. In the ir-
rotational part of the flow outside the viscous layers, the density gradient is uniquely related to the speed
gradient via the isentropic ρ(h) relation (1.69), and the adiabatic flow assumption of a constant total enthalpy
ho.

∇ρ
ρ

=
1

γ−1
∇h

h
=

∇(ho − 1
2V

2)

a2
= −

∇(12V
2)

a2
= −V

∇V

a2
(2.59)

Inserting this into (2.58) gives an alternative relation for σ in terms of the streamwise speed gradient and the
local Mach number,

σ = V
∇V

a2
·V = V 2 ∇V

a2
· ŝ = M2 ∂V

∂s
(2.60)

where ŝ was assumed to be parallel to V, with s being the arc length along a streamline. Figure 2.11 shows
the typical positive and negative σ field source distributions in the vicinity of a high-speed airfoil.
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Figure 2.11: Positive and negative source distributions associated with streamwise density gradients,
or the related speed gradients, near an airfoil in a compressible flow. The thin viscous vorticity layer
is also shown.

The source-superposition integrals (2.4) or (2.23) still correctly define the velocity field from the σ field in
this case, and indeed will be used in Chapter 8 to qualitatively investigate and explain compressible-flow
behavior. However, because the σ distributions near the airfoil are not necessarily compact and close to
the airfoil, they cannot be lumped onto the airfoil surface as source sheets without seriously degrading the
accuracy of the resulting velocity field. Hence, σ must be treated as a volume quantity which makes the
evaluation of the superposition integrals (2.4) or (2.23) computationally demanding.

A major consequence here is that quantitatively representing a compressible flow-field with sources and
vortices is computationally cumbersome and quite impractical, at least in 3D. For this reason, CFD methods
used for calculation of compressible flows typically use space-filling grids as shown in Figure 2.1 on which
V(r) or ϕ(r) are defined by interpolation, and σ or ω are not explicitly considered.

One exception is the case of small-disturbance compressible flows where the velocity everywhere departs
only slightly from the freestream. In this case the effects of the nonzero σ field can be captured by the
Prandtl-Glauert coordinate transformation, which will be addressed in Chapter 8.

2.8.3 Vorticity in high Reynolds number flows
The Helmholtz vorticity transport equation (1.95) dictates that an aerodynamic flow which is uniform up-
stream will have zero vorticity everywhere, except in boundary layers and wakes where the action of viscous
stress is significant. As sketched in Figure 1.9, at high Reynolds number these vortical regions are thin com-
pared to the body dimensions, which makes them natural candidates for lumping into sheets or filaments
with only a small loss of accuracy. Figure 2.12 shows such an approximate representation of an airfoil
flow-field via a variable-strength vortex sheet placed on the airfoil surface. In this vortex sheet model, the
irrotational inviscid flow extends all the way to the surface. Note also that in the 2D case there is no need
to place a vortex sheet on the wake, since the net vorticity integrated across the wake is essentially zero.
Chapter 3 will examine this flow-field model in more detail, and improve it for cases where the viscous
layer is not particularly thin.
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V V+ω V V+γ
γ (s)γωω (s,n)

Figure 2.12: Physical vorticity ω(s,n) in thin boundary layer is lumped into vortex sheet γ(s) placed
on the airfoil surface. Outside the boundary layer, there is typically very little difference between the
actual Vω(r) field and the approximated Vγ (r) field. This model is further examined and improved
in Chapter 3.

2.9 Flow-Field Modeling with Source and Vortex Sheets

The representation of low-speed aerodynamic flow-fields using source, vortex, and doublet sheets, when
possible, is attractive for a number of reasons.

• In a typical aerodynamic flow with thin viscous layers, very little accuracy is lost when vorticity ω

in the layers is lumped into vortex sheets γ placed on the body and wake surfaces. This is equivalent
to the usual inviscid-flow approximation. Chapter 3 examines this model’s limitations and gives
modifications to greatly improve its accuracy for cases where the viscous layers are not very thin.

• Only the body surfaces and possibly trailing wake surfaces need to be geometrically defined. In
contrast, directly defining a velocity field V(r) requires construction of a space-filling grid throughout
the flow-field.

• Numerical panel methods, which employ the sheet representation, require roughly 1/100 fewer un-
knowns than corresponding grid methods for any given level of accuracy.

• In cases where the velocity jumps ΔV or potential jumps Δϕ across the sheets are known, the source,
vortex, or doublet sheet strengths can be computed immediately. The defining relations are derived in
Appendix B, and restated here:

λ = n̂ · ΔV (2.61)

γ = n̂× ΔV (2.62)

μ = Δϕ (2.63)

2.9.1 Source sheet applications
A source sheet can be used to exactly represent the inviscid low speed flow about a non-lifting body, as
sketched in the middle of Figure 2.10. The sheet is placed everywhere on the surface, which together with
an added freestream defines the total velocity field.

V(r) =
1

4π

∫∫
λ(s,�)

(r−r′)

| r−r′|3 ds d� + V∞ (2.64)

For the usual impermeable body, this velocity must be tangent to the body surface everywhere. Setting the
field points just outside the surface at r = (s, �, 0+), this requirement is

V(s,�,0+) · n̂(s,�) = 0. (2.65)



Flow-Field Modeling 37

Substitution of (2.64) into (2.65) results in

1

4π

∫∫
λ(s,�)

(r−r′) · n̂
| r−r′|3 ds d� = −V∞ · n̂(s,�) ; r = r(s,�,0+) (2.66)

which is an integral equation for the unknown sheet strength λ(s,�). In practice, an approximate numerical
solution can be obtained by a panel method, which discretizes the surface into a large number of small
panels, and determines a piecewise-constant value of λ over each such panel, such that equation (2.66) is
satisfied at one control point on each panel. These λ values can then be substituted into (2.64) which allows
numerical calculation of the local V at any chosen point r, together with the local pressure via Bernoulli’s
equation (1.109). This thus defines the flow-field. See Katz and Plotkin [4] for the extensive details.

2.9.2 Vortex sheet applications
Source sheets have the disadvantage that they cannot by themselves represent a lifting flow. This problem
can be addressed by switching to vortex or doublet sheets, again placed on the body surface, as sketched on
the right side of Figure 2.12. In 2D, the velocity of a vortex sheet plus freestream has the following form.

V(r) =
1

2π

∫
γ(s)

ŷ×(r−r′)

| r−r′|2 ds + V∞ (2.67)

Like in the source-sheet case, the requirement of flow tangency V · n̂ = 0 gives an integral equation for the
vortex sheet strength.

1

2π

∫
γ(s)

ŷ×(r−r′) · n̂
| r−r′|2 ds = −V∞ · n̂ (2.68)

In addition, it is also necessary to impose a Kutta Condition to model the smooth flow off the trailing edge,
which is what’s seen in a real viscous flow. In the vortex sheet model this requires that the summed sheet
strength of the upper and lower surfaces be zero at the trailing edge.

γTEupper + γTElower
= 0 (2.69)

The solution for the unknown γ(s) can be again obtained by a panel method.

2.10 Modeling Non-uniqueness

In any given practical application, the flow-field representation via sources or vortices is non-unique, in that
different source, vortex, and freestream combinations can give the same velocity field. For example, the
source sheet superposition (2.64) and the vortex sheet superposition (2.67) can both represent exactly the
same (non-lifting) flow-field about the body. There will be a different velocity within the body, but that is
physically irrelevant.

The non-uniqueness extends even to the freestream component of the flow-field. For example, in the general
velocity superposition (2.3) the freestream can be represented either as a specified constant, or via infinite
source sheets or vortex sheets, as sketched in Figure 2.13. Using a constant added Vb to represent a uniform
flow is of course the simplest and the preferred approach in applications.

This representation non-uniqueness gives rise to many different possible types of panel methods, based
either on source sheets, or vortex/doublet sheets, or both. Katz and Plotkin [4] give an overview of many
such alternative formulations.
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λV

V

V γγλ

Figure 2.13: Three methods for imposing a uniform velocity (e.g. to represent a freestream V∞)
on the region of interest inside the dashed box: via the uniform added velocity Vb, via two infinite
source sheets, and via two infinite vortex sheets. All are valid, but using Vb is simplest. The three
representations also have different velocities outside the dashed box.

2.11 2D Far-Field Approximations
The lumping process described in Section (2.3) made ad-hoc simplifications to the kernel functions, which
introduced some unknown amount of error in the resulting simplified velocity fields. In this section the
kernel function approximation will be made more precise by using a Taylor series. This will give the option
of increasing the accuracy of the lumped model, and will also give insight into the behavior of the far-field,
or flow-field far from the body. The detailed derivation will be performed for the velocity potential in the
2D case for simplicity. The corresponding 3D results will be summarily presented in the next section.

2.11.1 2D source and vortex distribution far-field
By combining and recasting (2.50) and (2.53), arbitrary distributions of source and vorticity in 2D are seen
to have the following perturbation potential field ϕ, as sketched in Figure 2.14. The lnR and Θ kernel
functions are defined for convenience.

ϕ(x,z) =
1

2π

∫∫
(σ lnR − ω Θ) dx′ dz′ (2.70)

lnR(x,z ;x′,z′) ≡ ln
√

(x−x′)2 + (z−z′)2 (2.71)

Θ(x,z ;x′,z′) ≡ arctan
z−z′

x−x′
(2.72)

We now consider the case where the field point distance r is large compared to the extent of the source and
vorticity distributions, and we choose the origin to be located somewhere near these distributions. In these
circumstances, the kernel functions lnR and Θ will not change very much with respect to x′ and z′ within
the integration region, as indicated in Figure 2.14. Hence, they can be approximated well by their Taylor
series in x′ and z′ about the local origin (x′, z′) = (0, 0),

lnR = lnR

∣∣∣∣
0,0

+
∂ lnR

∂x′

∣∣∣∣
0,0

x′ +
∂ lnR

∂z′

∣∣∣∣
0,0

z′ + H.O.T.

= ln r − x

r2
x′ − z

r2
z′ + H.O.T. ; r ≡

√
x2 + z2

Θ = Θ

∣∣∣∣
0,0

+
∂Θ

∂x′

∣∣∣∣
0,0

x′ +
∂Θ

∂z′

∣∣∣∣
0,0

z′ + H.O.T.

= θ +
z

r2
x′ − x

r2
z′ + H.O.T. ; θ ≡ arctan

z

x
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Figure 2.14: Potential superposition of 2D source and vorticity distributions. If the distributions
are compact compared to the field-point distance r, the kernel functions lnR and Θ will vary only
slightly, and hence can be well-approximated by Taylor series about their origin values ln r and θ.

where H.O.T. denotes higher-order terms with x′2, z′2, x′z′, x′3, etc. Substituting these Taylor series into the
ϕ(x,z) integral (2.70) above, and rearranging gives

2π ϕ(x,z) =

∫∫ {
σ
(
ln r − x

r2
x′ − z

r2
z′
)

+ ω
(
−θ − z

r2
x′ +

x

r2
z′
)

+ H.O.T.
}
dx′ dz′

=

[∫∫
σ dx′ dz′

]
ln r −

[∫∫
ω dx′ dz′

]
θ

+

[∫∫ (
−σx′ + ωz′

)
dx′ dz′

]
x

r2
+

[∫∫ (
−σz′ − ωx′

)
dx′ dz′

]
z

r2
+ H.O.T. (2.73)

with (2.73) being the result after the powers of x and z are collected and taken outside the x′z′ integrals. In
terms of the convenient shorthand definitions

Λ ≡
∫∫

σ dx′ dz′ (2.74)

Γ ≡
∫∫

ω dx′ dz′ (2.75)

κx ≡
∫∫ (

−σx′ + ωz′
)
dx′ dz′ (2.76)

κz ≡
∫∫ (

−σz′ − ωx′
)
dx′ dz′ (2.77)

equation (2.73) is a far-field expansion for the perturbation potential

ϕ(x,z) 	 ϕff(x,z) ≡ Λ

2π
ln r − Γ

2π
θ +

κx
2π

x

r2
+

κz
2π

z

r2
(2.78)

which is approximate because the higher-order terms have been dropped from the Taylor series. Taking the
gradient and adding the freestream part gives the corresponding far-field expansion for the total velocity.

V(x,z) 	 Vff(x,z) ≡ V∞ + ∇ϕff

= V∞ +
Λ

2π

x x̂+ z ẑ

r2
+

Γ

2π

z x̂− x ẑ

r2

+
κx
2π

(z2−x2) x̂− 2xz ẑ

r4
+

κz
2π

−2xz x̂+ (x2−z2) ẑ

r4
(2.79)

Replacing the exact velocity V(x,z) with the approximate Vff(x,z) is equivalent to replacing the σ and ω
distributions with the corresponding Λ,Γ, κx, κz , filaments as indicated by Figure 2.15. These Λ and Γ are
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equivalent to those obtained by the lumping procedure described in the previous sections. However, the
added doublet κx and κz terms are new, and can be considered as corrections for the errors due to lumping
in cases where the the chosen lumped source and vortex location is offset from the centroids of the σ and ω
distributions.

x

z

σ, ω

V Vff

x

z

xΛ, Γ, κ κ, z

Figure 2.15: Far-field approximation obtained by replacing σ(x,z) and ω(x,z) distributions or sheet
λ(s) and γ(s) configurations with the much simpler filament singularities.

For cases where the starting distributions are source and vortex sheets with strengths λ(s) and γ(s), the
far-field coefficients would be defined as

Λ ≡
∫

λ ds (2.80)

Γ ≡
∫

γ ds (2.81)

κx ≡
∫ (

−λx′ + γz′
)
ds (2.82)

κz ≡
∫ (

−λz′ − γx′
)
ds (2.83)

where the parametric functions x′(s), z′(s) specify the sheet geometry or geometries. The integrals are eval-
uated over all the sheets present.

Application of the far-field potential or velocity expressions (2.78) or (2.79) requires knowing the values of
the coefficients Λ,Γ, κx, κz . However, obtaining these from their definitions (2.80)–(2.83) is not possible
in the typical situation where the field stregths σ, ω or sheet strengths λ, γ are not known without addi-
tional information or modeling. The subsequent sections will describe alternative means for computing the
coefficients from other relevant properties of the aerodynamic body.

2.11.2 Far-field effect of lift and drag
As derived in detail in Appendix C, the far-field vortex and source are related to the airfoil lift/span L′ and
drag/span D′, or equivalently to the 2D lift and drag coefficients c� and cd based on the airfoil chord c.

Γ =
L′

ρV∞
=

1

2
V∞ c c� (2.84)

Λ =
D′

ρV∞
=

1

2
V∞ c cd (2.85)

Relation (2.84) is the well-known Kutta-Joukowsky lift theorem. Relation (2.85) is perhaps less familiar,
but can be considered as the complementing theorem for the drag. Note that unstalled 2D airfoils typically
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have cd � c� and thus Λ � Γ, and hence the vortex term dominates the source term in typical airfoil
far-fields. In contrast, the source term is dominant for 2D bluff-body flows which typically have large drag
and comparatively little or no lift.

2.11.3 Far-field effect of thickness
Using a simplification of the models presented in Appendix D, the flow about a non-lifting thin airfoil of
thickness distribution t(x) can be represented by superimposing the freestream with a source sheet on the
chord line, as shown in Figure 2.16. The required sheet strength λ(x) is determined by mass conservation
applied to the local control volume.

V
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(  )xλ

V

(  )x
V
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xLE xTE t + td

xd

n

n

Figure 2.16: Flow about slender 2D airfoil represented by a source sheet of variable strength λ(x).

The total velocity is required to be tangent to the top and bottom of the control volume, since that lies on
the airfoil surface. Using the 2D version of result (2.39), the net outflow from the source sheet inside the
control volume is therefore equal to the volume flow difference between the left and right faces of height t
and t+dt. This gives the required source sheet strength distribution.

λ dx =

∮
V· n̂ dl = V∞(t+dt) − V∞ t = V∞ dt

λ(x) = V∞
dt

dx
(2.86)

This is the same as result D.17) obtained for the general airfoil case, so the assumption of a non-lifting airfoil
is justified here. The source sheet extends over xLE ...xTE (rather than say 0 ... c ) since x=0 is the chosen
location where the far-field singularities are to be placed, as indicated in Figure 2.15. This is not necessarily
the leading edge.

From the κx definition (2.82), with γ = 0 for this case, we have

κx =

∫ xTE

xLE

−λ x dx = V∞

∫ xTE

xLE

− dt

dx
x dx (2.87)

where x has been used for both the sheet geometry x′ and the integration coordinate s. The last integral
above can be integrated by parts.

κx = V∞

∫ xTE

xLE

− dt

dx
x dx = −V∞ t x

∣∣∣∣xTE

xLE

+ V∞

∫ xTE

xLE

t dx

The first term on the right vanishes since t(xLE) = t(xTE) = 0 at the leading and trailing edges, and the
rightmost integral is the airfoil area A=

∫ xTE

xLE
t dx. This gives a simple result for the x doublet strength.

κx = V∞ A (2.88)
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This result is strictly valid only if the airfoil is thin, which is required for accuracy of the source sheet model.
For airfoils of moderate thickness, a better empirical estimate is

κx = V∞ A

(
1 +

tmax

c

)
(2.89)

where tmax is the maximum airfoil thickness and c = xTE−xLE is the airfoil chord.

2.11.4 Far-field effect of lift’s pitching moment
Again following the thin airfoil theory model of Appendix D, the lift distribution on a thin cambered airfoil
can be represented by superimposing the freestream with a vortex sheet placed along the chord line. As
shown in Figure 2.17, this results in a jump in tangential velocity equal to the local sheet strength.

Δu(x) = γ(x)

(  )x
V

x

γ γ

Δu

(  )x
V

x

Δ

V

V

(  )xpΔu ,

xLE xTE

Figure 2.17: Tangential velocity jump Δu(x) across thin lifting airfoil, and corresponding pressure
load distribution Δp(x), represented by a vortex sheet of variable strength γ(x).

The corresponding pressure jump from Bernoulli’s equation is

Δp(x) =
1

2
ρ
[
(V∞ + Δu/2)2 − (V∞ − Δu/2)2

]
= ρV∞ Δu

= ρV∞γ (2.90)

which is in effect a local Kutta-Joukowsky relation. The pitching moment/span of the airfoil about the
origin, defined positive nose up, is then obtained by integrating this loading with the moment arm −x.

M ′
0 =

∫ xTE

xLE

−Δp x dx = ρV∞

∫ xTE

xLE

−γ x dx (2.91)

From the κz definition (2.83), with λ=0 for this case, we also have

κz =

∫ xTE

xLE

−γ x dx (2.92)

where again x has been used for both x′ and s. Comparing (2.91) and (2.92) gives the z-doublet in terms of
the pitching moment/span, or equivalently in terms of the pitching moment coefficient cm0 about the origin.

κz =
M ′

0

ρV∞
=

1

2
c2 V∞ cm0 (2.93)
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It’s important to note that M ′
0 is defined about the origin of the far-field coefficient integrals (2.74)–(2.77).

This is also the same location that is used to place the far-field singularities, and in particular the vortex.
If a moment M ′

ref about some other location xref is to be used to calculate κz , it’s necessary to derive the
equivalent M ′

0 from it by using the moment-reference shift relation.

M ′
0 = M ′

ref − xrefL
′ (2.94)

or cm0 = cmref
− xref

c
c� (2.95)

This M ′
0 or cm0 can then be used to obtain κz from (2.93) as before.

2.11.5 Doublet orientation
The x and z doublet expressions (2.89) and (2.93) have been derived for the case where the freestream is
along the x axis. For the more general case where V∞ has an angle α relative to the x axis, these doublet
expressions actually give the streamwise and normal doublets relative to the freestream direction.

κs = V∞ A

(
1 +

tmax

c

)
(2.96)

κn =
1

2
c2 V∞ cm0 (2.97)

The corresponding cartesian κx and κz are then obtained from these by a rotation transformation.

κx = κs cosα − κn sinα = κs
u∞

V∞
− κn

w∞

V∞
(2.98)

κz = κs sinα + κn cosα = κs
w∞

V∞
+ κn

u∞

V∞
(2.99)

In general, a doublet strength is a vector κ whose components depend on the orientation of the chosen
coordinate axes. These components also obey the usual transformation relations due to axes rotation.

2.11.6 2D far-field observations
A number of observations about the 2D far-field expansion can be made.

• It is rather fortuitous that the airfoil quantities which are of the most interest for engineering — lift,
drag, moment, area and thickness — are also the quantities which are needed to estimate the velocity
field far from the airfoil.

• All the Vff terms in (2.79) after V∞ decay to zero with increasing distance r, so very far away we have
Vff 	 V∞ as expected. However, for moderate distances from the airfoil, the far-field terms give a
much better approximation to the actual V.

• The various far-field terms in (2.79) after V∞ have different rates of decay with distance. The Λ and
Γ terms decay as 1/r, while the κx and κz doublet terms decay as 1/r2. In practice this means that
at sufficiently large distances, the doublet terms can be dropped from the expansion with little loss in
accuracy. Conversely, when sufficiently close to the airfoil the doublet terms may very well dominate.

• If only one type of singularity is present (e.g. only vorticity but no source density), and if in addition
the overall lumped vortex strength Γ is nonzero, then the far-field doublets can be made to vanish by
a suitable choice of the vortex location, which is then defined as the vorticity centroid. In the case of
the thin airfoil, this location is also the center of lift, defined as the point about which the pitching
moment is zero.
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2.12 3D Far-Fields

The 3D potential of a source distribution is given by (2.43), with the kernel’s distance function R again
defined for convenience.

ϕ(r) =
1

4π

∫∫∫
σ(r′)

−1

R
dx′ dy′ dz′ (2.100)

R ≡ | r−r′| =
√

(x−x′)2 + (y−y′)2 + (z−z′)2 (2.101)

As in the 2D case, the kernel function 1/R is now expanded as a Taylor series about the origin r′= 0, this
time using compact vector notation.

1

R
=

1

R

∣∣∣∣
0

+ ∇
(
1

R

)∣∣∣∣
0

· r′ + H.O.T.

=
1

r
− r · r′

r3
+ H.O.T. (2.102)

r ≡ |r| =
√
x2 + y2 + z2

Substituting (2.102) into (2.100) and dropping the higher order terms gives the corresponding 3D source-
far-field approximation.

ϕ(r) 	 ϕff(r) ≡ Σ

4π

−1

r
+

KK · r
4π

1

r3
(2.103)

=
Σ

4π

−1

r
+

Kx

4π

x

r3
+

Ky

4π

y

r3
+

Kz

4π

z

r3

Σ =

∫∫∫
σ dx′ dy′ dz′ =

∫
Λ d� (2.104)

Kx =

∫∫∫
−σ x′ dx′ dy′ dz′ =

∫
−Λ x′ d� (2.105)

Ky =

∫∫∫
−σ y′ dx′ dy′ dz′ =

∫
−Λ y′ d� (2.106)

Kz =

∫∫∫
−σ z′ dx′ dy′ dz′ =

∫
−Λ z′ d� (2.107)

The second integrals in (2.104)–(2.107) would be used for the case where the starting source distribution is
a filament Λ(�) rather than a volume source density. Like in the 2D case, a 3D doublet strength KK is a vector
whose three components depend on the chosen axes. Its being a vector is also what allows (2.103) to have
its coordinate-independent form.

2.12.1 3D far-field effect of drag
A 3D body with profile drag will have a viscous wake with some velocity defect Δuwake(y,z) ≡ u−V∞,
shown in Figure 2.18. Following the 2D airfoil analysis of Appendix C, the far-field source strength is the
integrated volume flow rate of the wake velocity defect, and the profile drag is the associated integrated
momentum defect.

Σ =

∫∫
−Δuwake dy dz (2.108)

Dp =

∫∫
(V∞+Δuwake)(−Δuwake) dy dz (2.109)

The drag derivation will also be given later in Section 5.6.
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In the far wake we also have Δuwake → 0, so that the two relations above can be combined to give the
far-field source strength in terms of the profile drag Dp of the body, or equivalently in terms of its profile
drag coefficient CDp based on some reference area Sref .

Σ =
Dp

ρV∞
=

1

2
V∞ Sref CDp (2.110)

V

y

z
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D

uwakeΔ

p

Vu= −

Figure 2.18: Viscous wake behind 3D body, with wake velocity defect Δuwake.

2.12.2 3D far-field effect of volume
The inviscid flow about a slender body of revolution, such as an airplane fuselage, can be accurately rep-
resented by a variable-strength source filament placed along the body centerline, superimposed with a
freestream. This model is shown in Figure 2.19.
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Figure 2.19: Flow about slender body represented by a source filament of variable strength Λ(x).

Following the 2D airfoil thickness analysis, the source filament strength Λ(x) can be determined by mass
conservation applied to the local control volume which has the body’s cross sectional area A(x) and is dx
thick in the axial direction. The flow is required to be tangent to the outside perimeter surface of the control
volume, so the net outflow from the source filament inside is equal to the volume flow difference between
the front and rear faces of area A and A + dA, as given by (2.39). This gives the required source filament
strength.

Λ dx = ©
∫∫

V· n̂ dS = V∞(A+dA) − V∞A = V∞ dA

Λ(x) = V∞
dA

dx
(2.111)
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The far-field x-doublet for this source filament is then determined from the Kx definition (2.105).

Kx =

∫ xTE

xLE

−Λ x dx = V∞

∫ xTE

xLE

−dA

dx
x dx (2.112)

The last integral above can be integrated by parts as in the 2D case, giving a rather simple expression for Kx

in terms of the body volume V=
∫ xTE

xLE
A dx.

Kx = V∞ V (2.113)

The above analysis is strictly valid only if the body is slender, which is a prerequisite for accuracy of the
source filament model. For non-slender bodies (2.113) tends to somewhat underpredict the actual far-field
doublet strength. For bodies of revolution, an improved empirical estimate is

Kx = V∞ V
(
1 +

1.25 (dmax/�)
3/2

1.5 + dmax/�

)
(2.114)

where dmax is the maximum cross-section diameter and �=xTE−xLE is the body length. For more general
body shapes, dmax can be replaced by

√
4Amax/π, where Amax is the maximum cross-sectional area.
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Viscous Effects in Aerodynamic Flows
This chapter will examine the changes in an aerodynamic flow caused by the presence of viscous wall
boundary layers and trailing wakes. The objective is to model and quantify these changes and to explain
their associated phenomena such as loss of lift at stall.

3.1 Inviscid Flow Model

Lumping of the vorticity in the viscous layers into vortex sheets, as illustrated in Figure 2.12 in Chapter 2,
produces a fictitious strictly-potential Equivalent Inviscid Flow (EIF) velocity field ui, vi(s,n). The EIF also
has a pressure field pi(s,n) related to ui, vi by the Bernoulli equation (1.109).

pi(s,n) = p∞ +
1

2
ρV 2

∞ − 1

2
ρ(u2i + v2i ) (3.1)

Here u, v will denote velocity components along the local orthogonal sheet coordinates s, n.

Figure 3.1 compares the EIF to the real flow in more detail, for the case where the lumped vortex sheet is
placed on the real surface. It is labeled “Simple” to distinguish it from the more advanced and accurate
models considered later, which mostly eliminate the modeling discrepancies in the velocity and pressure in
the Simple model.

s

n

γ s( )(    ) (    )u

n

s

ω s,ns,n

s( )u

Real Flow
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e

Figure 3.1: Real viscous flow approximated by Simple Inviscid Model. The v and vi wall-normal
velocity components are small and are not shown. This is a zoom-in of Figure 2.12.
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Since the real flow in the boundary layer has almost parallel streamlines, the static pressure across it must be
almost constant regardless of the velocity distribution. Hence the wall pressure pw(s) is nearly equal to the
edge pressure pe(s), which in turn is related to the edge velocity via the Bernoulli equation. The negligibly
small wall-normal velocity contribution v2e � u2e is omitted.

pw(s) 	 pe(s) = p∞ +
1

2
ρV 2

∞ − 1

2
ρu2e (3.2)

The subscript ( )e will in general denote an “edge” quantity in the irrotational flow just outside the edge of
viscous layer, which is demarked by the ne(s) curve shown in Figure 3.1. The subscript ( )w will denote a
wall quantity at n=0.

If the boundary layer is thin the vorticity-lumping procedure will incur little error, in which case the wall
velocity of the EIF closely approximates the edge velocity of the real flow.

uiw (s) 	 ue(s) (3.3)

Combining (3.1),(3.2),(3.3) we have

piw (s) 	 pw(s) (3.4)

so that the EIF captures the real surface pressures, and hence should produce reasonably accurate lift forces
and moments. Of course the EIF cannot represent the viscous skin friction in the real flow, so that it cannot
correctly predict the drag. This will be addressed in Chapter 4.

Although the above discussion assumed incompressible flows, the EIF concept and flow models can be
applied to compressible flows. The only differences are that the compressible Bernoulli relation (1.112)
would be used in lieu of (3.1), and a grid method would be used in lieu of the vortex-sheet EIF model shown
in Figure 3.1.

3.2 Displacement Effect

3.2.1 Normal mass flux matching
The major shortcoming of the simple inviscid model shown in Figure 3.1 is that it does not account for the
displacement effect of the slower-moving fluid inside the boundary layer. This acts as a wedge, tilting and
displacing the outer streamlines away from the wall, as shown in Figure 3.2.

uρ
υρ

s

(    )uρ s,n

n

s( )ne

n

Figure 3.2: Actual viscous flow with displaced streamlines and corresponding vertical mass flux ρv,
caused by piling up of the slower-moving fluid in the boundary layer.

This displacement changes the apparent flow tangency seen by the bulk flow, and thus modifies the overall
flow-field. In the simple inviscid model this effect is ignored, which is the main reason for the discrepancies
between the EIF’s and real flow’s edge velocity, wall pressure, and lift, shown in Figure 3.1. If the boundary
layers are thin, then these discrepancies are small and are often ignored. But if the boundary layers are thick,
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perhaps due to a low Reynolds number or the airfoil being close to or beyond stall, then the discrepancies
between the real flow and the Simple Inviscid Model’s EIF may be unacceptably large.

To mostly eliminate these modeling errors, the EIF must be constructed so that its vertical mass flux equals
that of the real flow outside the real boundary layer.

ρv(s,n) = ρivi(s,n) ( for n > ne(s) ) (3.5)

3.2.2 Normal mass flux in real flow
Consider the real viscous flow shown in Figure 3.2. The wall-normal mass flux ρv at some location n>ne

outside the shear layer is computed by integrating its n-gradient from the wall. After also invoking mass
continuity, the result is more concisely given in terms of the shear layer’s mass defect m(s), or the related
displacement thickness δ∗(s).

ρv(s,n) = ρv(s,0) +

∫ n

0

∂ ρv

∂n
dn = 0 +

∫ n

0
−∂ ρu

∂s
dn

=

∫ n

0

∂

∂s
(ρeue − ρu) dn − n

d ρeue
ds

=
d

ds

[
ρeue

∫ ne

0

(
1− ρu

ρeue

)
dn

]
− n

d ρeue
ds

or ρv(s,n) =
dm

ds
− n

d ρeue
ds

(actual flow, for n>ne) (3.6)

where m(s) ≡
∫ ne

0
(ρeue − ρu) dn = ρeueδ

∗

δ∗(s) ≡
∫ ne

0

(
1− ρu

ρeue

)
dn

Taking the d/ds derivative outside the integral is allowed provided the integrand is zero at the upper limit,
which is the reason for the n>ne requirement for the final relation (3.6). The mass defect is the difference
in the mass flow between the EIF and the real flow, integrated across the shear layer, and the displacement
thickness is the resulting physical displacement of the potential flow away from the wall.

It must be stressed here that calculation of m(s) and δ∗(s) requires an analysis of the boundary layer itself,
which will be treated in Chapter 4. Here they are assumed to be known properties of the boundary layer.

3.3 Improved Inviscid Flow Models

Two improved EIF models considered next are sketched in Figure 3.3. They define the EIF such that it
satisfies the normal mass flux matching requirement (3.5), and thus they capture the displacement effect.
The result is much better flow-field prediction accuracy, especially for flows with thick boundary layers.

3.3.1 Displacement Body model
This model employs the concept of a fictitious displacement body, which is offset from the actual body
by some distance Δn(s). The EIF is defined to be tangent to the displacement body, and hence can be
constructed by a vortex sheet placed on this displacement body, as shown in Figure 3.3, rather than on the
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Figure 3.3: Real viscous flow approximated by two improved EIF models which capture the real
flow’s displacement effect. This mostly eliminates the modeling discrepancies shown in Figure 3.1.

wall as in Figure 3.1. The objective here is to determine what Δn(s) has to be so that the vertical mass flux
matching condition (3.5) is satisfied.

The EIF’s ρivi in this situation is computed using the continuity equation, as for the real-flow case. Note
that ρivi is not zero at the displacement body, since displacement body’s normal vector is tilted away from
the n axis by the slope dΔn/ds. The model is also assumed a priori to give the correct EIF which matches
the real flow, so that we can set ui=ue.

ρivi(s,n) = ρeue
dΔn

ds
+

∫ n

Δn

∂ ρivi
∂n

dn = ρeue
dΔn

ds
−

∫ n

Δn

∂ ρiui
∂s

dn

= ρeue
dΔn

ds
− (n− Δn)

d ρeue
ds

or ρivi(s,n) =
d(ρeue Δn)

ds
− n

d ρeue
ds

(displacement-body model) (3.7)

Requiring this ρivi to be equal to the real flow’s ρv as defined by (3.6), gives

Δn(s) = δ∗(s) (3.8)

so that the necessary offset for the displacement body is just the displacement thickness (hence the name).

3.3.2 Wall Transpiration model
This model places the vortex sheet on the actual body as in the Simple Inviscid Model shown in Figure 3.1.
But now a source sheet of some strength λ(s) is also added, as shown in Figure 3.3. This generates a
fictitious wall transpiration or mass flux distribution (ρivi)w(s). The resulting EIF is thus intentionally not
made tangent to the real body, which enables simulating the displacement effect.
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The resulting ρivi at some distance n above the wall again follows from continuity.

ρivi(s,n) = (ρivi)w +

∫ n

0

∂ ρivi
∂n

dn = (ρivi)w −
∫ n

0

∂ ρiui
∂s

dn

or ρivi(s,n) = (ρivi)w − n
d ρeue
ds

(wall-transpiration model) (3.9)

Again requiring this to be equal to ρv of the actual flow (3.6) gives the the required wall mass flux.

(ρivi)w =
dm

ds
(3.10)

In a low-speed flow the normal velocity can be imposed using a source sheet, as indicated in Figure 3.3. In
this case the airfoil’s interior velocity can still be set to zero when the vortex sheet strength γ(s) is calculated
by the panel method. The required source sheet strength is then equal to the transpiration velocity, and
related to the mass defect as follows.

λ(s) = (vi)w =
1

ρ

dm

ds
(3.11)

3.3.3 Wake modeling
The boundary layers on a body merge together at the trailing edge or rear point and trail downstream as a
wake. A wake has two edges — upper and lower — where the potential-flow quantities will now be denoted
by ()u and ()l, respectively. The particular vertical location of the s-axis, or equivalently the n=0 point, is
not significant, and it can lie anywhere in or near the wake.

If the wake is thin compared to the streamwise radius of curvature, then it has a nearly uniform static
pressure across it like a boundary layer. Also, the lower and upper potential flows have the same freestream
total pressure, so that the two edge velocities must also be the same, and so both can be denoted by ue.

pu(s) = pl(s) → uu(s) = ul(s) = ue(s) (3.12)

The 2D wake has a nonzero mass defect and in general nonzero normal mass fluxes at nu and nl. Repeating
the previous mass flux analysis for the wake, the real-flow edge mass flux relation (3.6) becomes a jump
condition across the wake.

Δ(ρv) ≡ ρv(s,nu) − ρv(s,nl) =
dm

ds
− (nu−nl)

d ρeue
ds

(actual wake) (3.13)

where m(s) ≡
∫ nu

nl

(ρeue − ρu) dn = ρeueδ
∗

δ∗(s) ≡
∫ nu

nl

(
1− ρu

ρeue

)
dn

Note that the m and δ∗ definitions are the same as for the wall case, aside from the different edge limits.

Repeating the mass flux analysis for the Displacement-Body and Wall-Transpiration models, and requiring
that the resulting Δ(ρv) matches the real-flow result (3.13), gives the required displacement body thickness,
and the required source sheet strength.

Δn(s) = δ∗(s) (2D-wake Displacement Body model) (3.14)

λ(s) =
1

ρ

dm

ds
(2D-wake Wall Transpiration model) (3.15)
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These are the same as (3.8) and (3.11) for the boundary layer, except that Δn now only gives the thickness
of the wake displacement body. The camber shape of the wake displacement body must be implicitly
determined from the zero pressure jump or velocity jump requirement, such that the wake displacement
body carries no lift.
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Figure 3.4: Real viscous flow of wake approximated by two EIF models which capture the wake’s
displacement effect.

The EIF models resulting from the above matching relations are shown in Figure 3.4. Note that the Dis-
placement Body model requires the use of two vortex sheets, which must have equal and opposite strengths
as required by zero velocity jump requirement across the whole wake.

γu(s) + γl(s) = 0 (3.16)

3.3.4 Improved flow model advantages
Both the Displacement Body and the Wall Transpiration models quantitatively give very nearly the same
results when incorporated into potential flow calculation methods, and both are great improvements over the
Simple Inviscid model when separation is present. An example comparison is shown in Figure 3.5 for an
airfoil from zero lift to beyond stall. At small lift coefficients where the displacement effects are weak, the
three models give comparable results, as shown in Figure 3.6 for α = 0◦. At a large lift coefficient with
trailing edge separation, the differences are quite significant, as shown in Figure 3.7 for α = 16◦.

3.4 Viscous Decambering Stall Mechanism
The Displacement Body model combined with Glauert’s thin airfoil theory [8], sections D.2 and D.3, pro-
vides an intuitive explanation for the loss of lift at stall. This theory gives the general lift result

c�(α) = 2πα + c�0 (3.17)

for any thin airfoil. The lift intercept c�0 depends only on the airfoil’s camberline shape, and is most sensitive
to the deflection angle of the camberline over the rear portion of the airfoil. These results also apply to more
general airfoils, except with finite thickness the slope dc�/dα = 2π will be somewhat larger.
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Figure 3.5: Comparison of c�(α) lift curves for GAW(1) airfoil at Rec = 6million,M∞ = 0.15,
calculated by XFOIL [5] and MSES [6]. Experimental data is from McGhee et al [7].

In light of this result we examine the camberlines of the displacement bodies of the GAW(1) airfoil at the
α=0◦ and α=16◦ operating points, shown in Figure 3.8. The large separation region over the upper rear
of the airfoil at high α increases the displacement body offset Δn there, creating an upward deflection in its
camberline which then causes the downward shift in the lift curve for that shape. This upward deflection
of the effective camberline is called the viscous flap. The two resulting fixed-camberline c�(α) functions
intersect the actual c�(α) curve for the airfoil, which in effect goes through a progression of ever-increasing
upward viscous flap deflections which gradually reduce the lift from its strictly inviscid value. Maximum
lift and subsequent stall occurs when this viscous flap decambering progression overpowers the inviscid lift
coefficient gradient dc�/dα.

3.5 Considerations in Flow Model Selection

The Simple Inviscid model shown is Figure 3.1 is attractive because it requires only the body geometry
and the freestream velocity as inputs. Hence, it’s relatively simple to apply via any inviscid-flow theory or
calculation method. For this reason it is often used as a first estimate, and whenever the viscous effects can
be considered negligible, as for the small angles of attack in the GAW(1) airfoil example above.

Although the Displacement Body or Wall Transpiration models are clearly superior for all cases, they are
considerably more complex to implement and to use. The major complication in their implementation
is that they require knowledge of the boundary layer’s mass defect m(s) or displacement thickness δ∗(s)
distributions. These quantities not known a priori, but must come from an analysis of the boundary layer
itself (as treated in Chapter 4). Furthermore, the inviscid flow calculation and the boundary layer calculation
are also coupled, in that the output of one is the input to the other. For this reason they must be solved in
a coupled manner, as for example in the XFOIL 2D airfoil code [5]. This treatment is considerably more
complex than the straightforward use of only an inviscid method, such as a panel method, in the Simple
Inviscid model, especially for 3D flows. Section 4.12 gives further discussion of the coupling of inviscid
and boundary layer flows.
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Figure 3.6: Comparison of GAW(1) airfoil surface Cp distributions for the α = 0◦ point. The
airfoil is shown with the displacement body superimposed. The flow is well attached, so that the
displacement effects are weak and the displacement body differs only slightly from the actual airfoil.
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Figure 3.7: Comparison of GAW(1) airfoil surface Cp distributions for the α = 16◦ point. The
displacement body is now very different from the actual body, due to trailing edge boundary layer
separation which also extends into the wake.
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Chapter 4

Boundary Layer Analysis
This chapter will treat the physics of aerodynamic boundary layers flows. The objectives include iden-
tification of relevant boundary layer parameters, derivation of their governing equations, and formulation
of solution methods. Additional objectives are to obtain insight into boundary layer behavior and how it
determines overall viscous losses and profile drag.

4.1 Boundary Layer Flow Features and Overview
In general, a boundary layer flow is either laminar with smooth and nearly parallel streamlines, or turbulent
with chaotic motion and significant fluid mixing. Most aerodynamic flows over streamline shapes, such as
the airfoil flow shown in Figure 4.1, have laminar boundary layers on each side starting from the leading
edge stagnation point, which eventually undergo transition and become turbulent. The two boundary layers
then merge at the trailing edge into a wake which is almost invariably turbulent. The airfoil’s profile drag is
related to the properties of the far-downstream wake, as derived in Appendix C.

Far Wake
n

s

ue

V

. . .

Laminar flow Turbulent flow

Transition

Transition

Stagnation
     point

Figure 4.1: Boundary layer and wake development on a typical airfoil, shown by the u(n) velocity
profiles. The layer thicknesses are shown exaggerated.

The goals of this chapter are description and prediction of the important aspects and parameters of the bound-
ary layer flow shown in Figure 4.1. Examples are quantities such as the mass defect m(s) and displacement
thickness δ∗(s) distributions, already identified in Chapter 3 as being required to model the boundary layer’s
effects on the overall potential flow. Both laminar and turbulent boundary layers as well as the transition
locations will be considered.

Other goals of this chapter include prediction of profile drag, and prediction of boundary layer behavior in
general, in particular its response to pressure gradients. A major motivation is the fact that much of aero-
dynamic design can be viewed as “boundary layer management,” in that boundary layers determine profile
drag, and their separation also determines the maximum attainable lift, as discussed in Chapter 3. Hence,
boundary layer behavior ultimately sets fundamental limits on most aspects of aerodynamic performance.

The focus here will be on 2D flows, which is sufficient to investigate the majority of the important features
of boundary layer behavior. Basic 3D effects will also be briefly considered.
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4.2 Defect Integrals and Thicknesses

As a first step, it’s useful to identify important overall properties of the boundary layer at any streamwise lo-
cation s. As in Chapter 3, u, v will denote the s, n axis velocity components, which for a turbulent boundary
layer represent the mean flow (e.g. time-averaged flow). The Equivalent Inviscid Flow (EIF) concept, first
introduced in Section 3.1, will also be invoked here. Here we will assume that the EIF exactly matches the
actual flow outside the boundary layer, and that it’s constant through the boundary layer thickness, so that

ui(s,n) = ue(s) , ρi(s,n) = ρe(s) (4.1)

at every streamwise station s. The assumption is equivalent to assuming that the boundary layer is very thin
compared to the streamwise radius of curvature. This curvature is accounted for in higher-order boundary
layer theory, as for example by Lock and Williams [9]. It will not be addressed here.

4.2.1 Mass flow comparison
Figure 4.2 shows the mass flow per unit span passing through the streamtube of height ne, for the real flow
and the corresponding EIF. These mass flows might be needed for a control-volume analysis for example.

ṁ =

∫
dṁ =

∫ ne

0
ρudn =

∫ ne

0
ρeue dn −

∫ ne

0
(ρeue − ρu) dn

or ṁ = ṁi − m (4.2)

where ṁi ≡
∫ ne

0
ρeue dn = ρeue ne

m ≡
∫ ne

0
(ρeue − ρu) dn = ρeue δ

∗ (4.3)

and δ∗ ≡
∫ ne

0

(
1− ρu

ρeue

)
dn (4.4)

The EIF mass flow is greater than the actual mass flow, the difference being the mass defect m. This is seen
to be the fictitious mass flow between the real and displacement bodies locally spaced a distance Δn= δ∗

apart. This result is closely related to the viscous displacement models shown in Figure 3.3. Those were
also based on mass conservation, and hence also depended on the m(s) and δ∗(s) of the boundary layer.

m
 .

m
 .

i

e e ennn

m
 .

m

 Mass
Defect

eu

u( )n

eu eu

ui
ui

δ∗

Same Captured Area Same Captured Mass Flow

Figure 4.2: Comparison of actual and EIF mass flows.

4.2.2 Momentum and kinetic energy flow comparisons
Momentum flow is carried by mass flow, and was already treated in the momentum control volume flow
analysis in Section 1.3. Here it will be viewed as the force which acts on a hypothetical barrier which
captures the mass flow and brings the fluid’s velocity to zero. Similarly, the kinetic energy flow carried by
a mass flow will be viewed as the power obtained from an ideal turbine array which brings the fluid to rest
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Figure 4.3: Comparison of actual and EIF’s momentum flow and kinetic energy flow, for the same
mass flow. Momentum flow is equal to the force on a hypothetical barrier which brings the fluid
stream’s s-velocity to zero. Kinetic energy flow is equal to the power from an ideal turbine array
which brings the fluid stream’s velocity to zero reversibly.

reversibly. Figure 4.3 compares the barriers and turbine arrays between the actual flow and the EIF. The
comparison is done at the same mass flow for all cases, which requires the EIF’s barrier and turbine array to
be shorter by the displacement thickness height δ∗.

The force and power are obtained by integrating the momentum and kinetic energy fluxes across the profile.
The EIF flow case in Figure 4.3 on the right gives the following.

Fi =

∫
ui dṁi =

∫ ne

δ∗
ρiu

2
i dn = ρeu

2
e(ne−δ∗) (4.5)

Ėi =

∫
1
2u

2
i dṁi =

∫ ne

δ∗

1
2ρiu

3
i dn = 1

2ρeu
3
e(ne−δ∗) (4.6)

For the real flow case shown in Figure 4.3 on the left we have

F =

∫
u dṁ =

∫ ne

0
ρu2 dn =

∫ ne

0
ρeu

2
e dn − ue

∫ ne

0
(ρeue−ρu) dn −

∫ ne

0
(ue − u) ρu dn

= ρeu
2
e ne − ue(ρeueδ

∗) − ρeu
2
eθ

F = Fi − P (4.7)

Ė =

∫
1
2u

2 dṁ =

∫ ne

0

1
2ρu

3 dn =

∫ ne

0

1
2ρeu

3
e dn − 1

2u
2
e

∫ ne

0
(ρeue−ρu) dn −

∫ ne

0

1
2

(
u2e−u2

)
ρu dn

= 1
2ρeu

3
e ne − 1

2u
2
e(ρeueδ

∗) − 1
2ρeu

3
eθ

∗

Ė = Ėi − K (4.8)

where the following new defect quantities and associated thicknesses have appeared.

P ≡
∫ ne

0
(ue − u) ρu dn = ρeu

2
eθ (momentum defect) (4.9)

K ≡
∫ ne

0

1
2

(
u2e−u2

)
ρu dn = 1

2ρeu
3
eθ

∗ (kinetic energy defect) (4.10)

θ ≡
∫ ne

0

(
1− u

ue

)
ρu

ρeue
dn (momentum thickness) (4.11)

θ∗ ≡
∫ ne

0

(
1− u2

u2e

)
ρu

ρeue
dn (kinetic energy thickness) (4.12)



60 Chapter 4

From the final results (4.7) and (4.8) we see that the actual flow has momentum and kinetic energy flows
which are less than the EIF’s values by the corresponding defects P and K .

The momentum defect P has also appeared in the airfoil far-field profile drag analysis in Appendix C. The
kinetic energy defect K will be seen to be related to the viscous dissipation in the boundary layer, and to
the profile drag as well. The associated thicknesses θ and θ∗ will also appear in the formulation of integral
boundary layer calculation methods considered later in this chapter.

4.2.3 Other integral thickness interpretations
In incompressible flow where ρ = ρe = constant, the displacement, momentum, and kinetic energy thick-
nesses have additional interpretations in terms of the geometry of the normalized velocity profile U . By
setting ρ/ρe=1, the thickness definitions (4.4),(4.11),(4.12) simplify as follows.

U ≡ u

ue
(4.13)

δ∗ =

∫ ne

0
(1− U) dn , θ =

∫ ne

0

(
U − U2

)
dn , θ∗ =

∫ ne

0

(
U − U3

)
dn (4.14)

These incompressible thickness definitions can be interpreted as the geometric areas defined by the U,U2, U3

profiles as shown in Figure 4.4 on the left. The displacement thickness has another interpretation as the
height of the line which splits the profile into two equal areas. This is shown in the middle sketch of Fig-
ure 4.4.

In a separated flow region, such as would occur on the upper rear surface of the nearly-stalled airfoil shown
in Figure 3.7, most of the vortical fluid of the boundary layer has lifted off the wall. A typical velocity
profile for this type of flow is shown in Figure 4.4 on the right. It is more correct to call this a free shear
layer which lies between two distinct flow regions. One is the potential flow region outside the shear layer,
and the other is the nearly-stagnant recirculating flow region between the wall and the shear layer. In this
case we can interpret θ as being a measure of the thickness this shear layer (numerically its thickness is
approximately 8θ). In contrast, δ∗ is a measure of the distance from the wall to the shear layer centerline.

1
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U0

δ∗

equal
areas

1

n

U0

δ∗

1

n

U2

U

0

θ δ∗

∗θ

U3

∼

8θ ∼ thickness of
shear layer

distance to
shear layer

−

−

Figure 4.4: Interpretation of the integral thicknesses for incompressible flow, in terms of the geom-
etry of the normalized velocity profile U=u/ue, and also U2 and U3. Since the horizontal scale is
dimensionless, the areas have the same length unit as the vertical n axis.
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4.3 Boundary Layer Governing Equations

4.3.1 Thin Shear Layer approximations
As discussed in Section 1.5.4, at high Reynolds number the viscous layers are thin compared to their stream-
wise length. This allows making the following Thin Shear Layer (TSL) approximations in the locally-
cartesian s, n surface coordinates (see Figure 3.2).

v � u (4.15)
∂u

∂s
� ∂u

∂n
(4.16)

∂p

∂n
	 0 (4.17)

Approximation (4.15) is a geometric consequence of the streamlines having only a small angle away from
the wall and the s axis, as shown in Figure 3.2. Approximation (4.16) follows from the relatively rapid
variation of the velocity across the layer. Together with (4.15) this allows dropping all but the ∂u/∂n term
in the 2D version of the full viscous stress tensor (1.22), so that only the off-diagonal shear-stress terms
τsn=τns=τ are significant.

¯̄τ =

[
τss τsn
τns τnn

]
	

[
0 τ
τ 0

]
(4.18)

Approximation (4.17) follows from the streamlines being almost parallel within the layer. This was already
used in Chapter 3 to give the wall pressure result (3.2), shown in Figure 3.1. Here this approximation allows
replacing the n-momentum equation with the simple statement that the pressure across the boundary layer
at any s location is constant, and equal to the inviscid flow’s edge pressure at that same s location.

p(s,n) 	 pe(s) (4.19)

Consequently, the streamwise pressure gradient in the remaining s-momentum equation can be replaced by
the edge velocity gradient using the inviscid streamwise momentum equation.

− ∂p

∂s
= −dpe

ds
= ρeue

∂ue
∂s

+ ρeve
∂ue
∂n

	 ρeue
due
ds

(4.20)

4.3.2 Boundary layer equations
Applying all the TSL approximations above to the full Navier-Stokes momentum equation (1.36), and using
the unmodified mass equation (1.33), produces the following simpler boundary layer equations.

∂ ρu

∂s
+

∂ ρv

∂n
= 0

ρu
∂u

∂s
+ ρv

∂u

∂n
= ρeue

due
ds

+
∂τ

∂n

τ = (μ + μt)
∂u

∂n

(4.21)

In the shear τ definition above, μt(s,n) is the Boussinesq eddy viscosity. This captures the effects of turbu-
lence, as will be discussed in the next section.

Appropriate boundary conditions at every s location for a wall boundary layer are

at wall , n= 0 : u = 0 , v = 0

at edge , n=ne : u = ue
(4.22)
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where the boundary condition “at infinity” is now imposed as a specified ue at the edge location ne just
outside the boundary layer. The boundary layer equations (4.21) also apply for other shear layer flows such
as jets, wakes, and mixing layers. But for these flows different boundary conditions would be used.

If the outer potential flow is incompressible, and in addition there is no significant wall heating or cooling,
then the boundary layer is also incompressible and the viscosity is constant, as discussed in Section 1.8.
Specifically, in the boundary layer equations (4.21) we have ρ=ρe=constant and μ=constant. If μt is also
known via some turbulence model, these equations are then closed, meaning that they are solvable for the
u, v(s,n) velocity fields.

If significant wall cooling or heating is present, or if the edge Mach number is sufficiently large for signifi-
cant frictional heating to occur, then the density and viscosity variation across the boundary layer need to be
accounted for via the temperature variation. These compressibility corrections are somewhat beyond scope
and will not be treated here in any theoretical detail.

4.3.3 Characteristics of turbulent boundary layers
A turbulent boundary layer features small-scale, rapid, chaotic velocity fluctuations, which result in turbu-
lent mixing which transports momentum across the boundary layer. This momentum transport is an apparent
Reynolds shear stress, also called turbulent shear stress, and is given by τt = μt ∂u/∂n. This adds to the
molecular-motion transport which constitutes the usual laminar viscous shear stress τ� = μ∂u/∂n, so that
the total shear stress in equations (4.21) is the sum of the laminar and turbulent contributions.

τ (s,n) = τ� + τt =
(
μ+ μt(s,n)

) ∂u

∂n
(4.23)

In contrast to the laminar viscosity μ which is nearly constant, the eddy viscosity μt(n) varies strongly across
the boundary layer at any given location s, with the result that the turbulent ∂u/∂n profile and hence the u
profile are markedly different from the laminar case. The various relevant laminar and turbulent profiles are
sketched and compared in Figure 4.5.

wall layer

n

u t τu

n

τμ

Laminar
H = 2.6 H

Turbulent
1.4−~

μ μ+

Figure 4.5: Comparison of laminar and turbulent flat-plate velocity, viscosity, and shear profiles.
The shape parameter H is introduced in Section 4.5.

The key feature which makes turbulent boundary layers so different is that μt is large relative to μ over most
of the turbulent boundary layer, but falls linearly to zero over roughly the bottom 20% portion called the
wall layer. Here the total stress τ is approximately constant and equal to the wall shear stress τw. Hence in
the wall layer ∂u/∂n varies roughly as 1/n, and therefore u(n) ∼ ln n. The variation of all the quantities in
the wall layer can be summarized as follows.

τ (n) 	 τw ∼ const.
μt(n) ∼ n

∂u/∂n = τ (n)/μt(n) ∼ 1/n (assuming μ�μt)
u(n) ∼ ln n
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The logarithmic profile in the wall layer gives the overall turbulent profile its distinctive “knee.” Its greater
velocities near the wall greatly increase the turbulent boundary layer’s resistance to adverse pressure gra-
dients by a factor of five or more over laminar flow, which is crucial for the lift generation capability of
typical airfoils. The main drawback is that turbulent flow results in increased skin friction and profile drag
compared to laminar flow, and this discrepancy increases with increasing Reynolds number. For this reason,
turbulent flow is generally undesirable wherever its adverse pressure gradient resistance is not needed.

To solve the boundary layer equations (4.21) for turbulent flow, we must also simultaneously determine
the entire eddy viscosity μt(s,n) field, inside and outside the wall layer. This is one of the central goals
addressed by turbulence modeling, which is an enormous field (see Reynolds [10]). Covering any such
models is beyond scope here. Instead, we will only discuss the general features of turbulence on boundary
layer behavior, and consider only relatively simple integral turbulent calculation methods which do not need
detailed turbulence models for the eddy viscosity.

4.4 Boundary Layer Response to Pressure and Shear Gradients

If we temporarily redefine s, n to be parallel and normal to some particular streamline, then locally v=0 in
these coordinates, and the s-momentum equation becomes

ρu
∂u

∂s
= ρeue

due
ds

+
∂τ

∂n

which provides an estimate of the change in a fluid element’s velocity Δu over some small distance Δs.

Δu 	 ∂u

∂s
Δs =

ρeue
ρu

Δue +
1

ρu

∂τ

∂n
Δs (4.24)

The first term on the right in (4.24) represents the effect of a streamwise pressure gradient dp/ds. Of
particular importance is the factor ρeue/ρu which “magnifies” any edge velocity change Δue into a larger
change Δu inside the boundary layer, as shown in Figure 4.6.
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Figure 4.6: Velocity changes Δu along streamlines resulting from a favorable or adverse pressure
gradient which applies the same accelerating or decelerating net force per unit volume to all fluid
elements. Slower-moving elements have a larger Δu, resulting a distortion of the velocity profile.
A sufficiently strong adverse pressure gradient will cause a flow reversal and boundary layer sepa-
ration.



64 Chapter 4

When dp/ds < 0 we have a favorable pressure gradient. This corresponds to due/ds > 0, so this is also
called an accelerating boundary layer. As pictured at the top of Figure 4.6, the pressure gradient applies
the same accelerating force per unit volume to all the fluid elements in the boundary layer, but the slower
element responds more strongly due to its larger ρeue/ρu factor in (4.24).

When dp/ds > 0 we have an adverse pressure gradient. This corresponds to due/ds < 0, so this is
also called a decelerating boundary layer, pictured at the bottom of Figure 4.6. In this case we have the
possibility of flow reversal near the wall, which results in flow separation where the bulk of the shear layer
lifts off the wall as shown in Figure 4.4 on the right. This also results in rapid increases in the mass defect,
and thus produces strong viscous displacement effects on the outer potential flow.

Unlike the streamwise pressure gradient which is uniform across the boundary layer thickness, the transverse
shear gradient ∂τ/∂n varies strongly across the layer and applies different streamwise forces to different
fluid elements, as shown in Figure 4.7. These variations in the shear forces persistently tend to “flatten” the
velocity profile, and their cumulative effect is to cause the overall boundary layer to thicken downstream.
The shear gradient also provides a negative feedback in the streamwise momentum equation, in that it acts to
partially counter the possibly rapid u(n) profile shape distortions caused by streamwise pressure gradients.
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Figure 4.7: A transverse shear gradient produces a net streamwise force per unit volume which
tends to “flatten” the velocity profile, and results in an overall growth of the boundary layer.

4.5 Integral Boundary Layer Relations

4.5.1 Integral momentum equation
The integral momentum analysis begins by combining the continuity and s-momentum equations as follows.

(ue−u)

[
∂ ρu

∂s
+

∂ ρv

∂n
= 0

]
−

[
ρu

∂u

∂s
+ ρv

∂u

∂n
= ρeue

due
ds

+
∂τ

∂n

]
∂

∂s
[(ue−u)ρu] +

∂

∂n
[(ue−u)ρv] = −(ρeue−ρu)

due
ds

− ∂τ

∂n
(4.25)

Integrating
∫ ne

0 [ equation (4.25)] dn term by term then gives the dimensional form of the von Karman
integral momentum equation,

d

ds

(
ρeu

2
eθ
)

= τw − ρeueδ
∗ due
ds

(4.26)

or equivalently
dP

ds
= τw + δ∗

dp

ds
(4.27)
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where we see the reappearance of the mass defect m = ρeueδ
∗ and momentum defect P = ρeu

2
eθ which

previously appeared in Section 4.2.2 in the mass and momentum flow comparisons between viscous and
inviscid flows.

Dividing equation (4.26) by ρeu
2
e produces the exactly equivalent dimensionless form,

dθ

ds
=

cf
2

−
(
H + 2−M2

e

) θ

ue

due
ds

(4.28)

where the following new dimensionless parameters have been defined.

H ≡ δ∗

θ
shape parameter

cf ≡ τw
1
2ρeu

2
e

skin friction coefficient

Me ≡ ue
ae

edge Mach number

The edge Mach number appears in (4.28) via the isentropic relation (1.78) between density and velocity
differentials, which is valid for the edge quantities since these are in the inviscid flow.

dρe
ρe

= −M2
e

due
ue

(4.29)

The dimensional von Karman equation (4.26) is seen to govern the evolution of the momentum defect
P , while the dimensionless form (4.28) governs the evolution of the related momentum thickness θ. The
solution of (4.28) to determine θ(s) will be addressed in later sections.

4.5.2 Integral kinetic energy equation
An equation for the kinetic energy is obtained by multiplying the momentum equation by the velocity u.
The mass equation is also incorporated to put the result into divergence form as follows.

1
2

(
u2e−u2

)[ ∂ ρu

∂s
+

∂ ρv

∂n
= 0

]
− u

[
ρu

∂u

∂s
+ ρv

∂u

∂n
= ρeue

due
ds

+
∂τ

∂n

]
∂

∂s

[
1
2

(
u2e−u2

)
ρu
]
+

∂

∂n

[
1
2

(
u2e−u2

)
ρv
]

= −u(ρe−ρ)ue
due
ds

− u
∂τ

∂n
(4.30)

Integrating
∫ ne

0 [ equation (4.30)] dn term by term gives the dimensional integral kinetic energy equation,

d

ds

(
1
2ρeu

3
eθ

∗
)

= D − ρeu
2
eδ

∗∗ due
ds

(4.31)

or equivalently
dK

ds
= D + ueδ

∗∗ dp

ds
(4.32)

where the kinetic energy defect K = 1
2ρeu

3
e θ

∗ appeared previously in Section 4.2.2 in the kinetic energy
flow comparisons between viscous and inviscid flows. New quantities which appear here are

δ∗∗ ≡
∫ ne

0

(
1− ρ

ρe

)
u

ue
dn (4.33)

D ≡
∫ ne

0
τ
∂u

∂n
dn =

∫ ne

0
(μ+μt)

(
∂u

∂n

)2
dn (4.34)
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where δ∗∗ is the density flux thickness which measures the work done (positive or negative) by the pressure
gradient in conjunction with density variations across the boundary layer, and D is the dissipation integral
which measures the local rate of flow kinetic energy dissipation into heat by the shear stress τ acting on the
fluid which is deforming at the shear strain rate ∂u/∂n. Note that δ∗∗ = 0 in incompressible flow where
ρ/ρe=1, while D is always present and is virtually always positive (μt<0 is very unlikely).

Dividing equation (4.31) by 1
2ρeu

3
e produces its exactly equivalent dimensionless form,

dθ∗

ds
= 2 cD −

(
2H∗∗

H∗
+ 3−M2

e

)
θ∗

ue

due
ds

(4.35)

where the following new dimensionless parameters have been defined.

H∗ ≡ θ∗

θ
kinetic energy shape parameter

H∗∗ ≡ δ∗∗

θ
density flux shape parameter

cD ≡ D
ρeu3e

dissipation coefficient

The dimensional kinetic energy equation (4.31) is seen to govern the evolution of the kinetic energy defect
K, while the dimensionless form (4.35) governs the evolution of the related kinetic energy thickness θ∗.
The dimensionless kinetic energy equation (4.35) is used in some advanced integral calculation methods.
See Rosenhead [11], Schlichting [12], and Drela et al. [6] for examples.

4.5.3 Integral defect evolution
To gain insight into how the integral defects evolve along a boundary layer, and how they relate to 2D profile
drag, we integrate the dimensional von Karman equation (4.26) on each airfoil side and in the wake. On the
airfoil surfaces the integration runs from the stagnation point s=0 to some surface location s, while in the
wake it runs from the trailing edge sTE to some wake location s, as sketched in Figure 4.8.∫ s

0

{
dP

ds′
= τw − m

due
ds′

}
ds′

P (s) =

∫ s

0
τw ds′ +

∫ s

0
−m

due
ds′

ds′ (on airfoil surface) (4.36)

P (s) = PTE +

∫ s

sTE

−m
due
ds′

ds′ (in wake) (4.37)

Since the stagnation point momentum defect P (0) is zero, it was dropped from (4.36). And since the wall
shear is zero in the wake, the τw term was dropped from (4.37). The initial wake defect PTE in (4.37) is the
sum of the upper and lower surface defects at the trailing edge.

The same integration can be applied to the dimensional kinetic energy equation (4.31).∫ s

0

{
dK

ds′
= D

}
ds′

K(s) =

∫ s

0
D ds′ (on airfoil surface) (4.38)

K(s) = KTE +

∫ s

sTE

D ds′ (in wake) (4.39)
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The δ∗∗ term in (4.31) has been neglected since it vanishes in incompressible flow, and is usually small in any
case. For adiabatic compressible flows Sato [13] has incorporated the δ∗∗ term into a modified dissipation
integral D, so the forms of the integrated K(s) expressions (4.38) and (4.39) are generally valid.

. . .
s

s
s

0

( )s
ue ( )s

( )swτ
m

( )sP

( )s

P

( )sP

s s

PTE

sTE

D

( )s

( )sK
( )sK

K

( )s
ue ( )s
m

( )s

( )sP
K

TEK

Δu

Figure 4.8: Momentum defect P (s) at any location s, including in the wake, obtained as an integral
over upstream τw,m, ue(s′) distributions. Kinetic energy defect K(s) is obtained from upstream
D(s′) distribution. Far-downstream wake’s P∞,K∞ are related to the airfoil’s profile drag/span D′.

We now examine the P (s) and K(s) distributions on the GAW-1 airfoil. Figure 4.9 shows its Cp distributions
at α=5◦. Figure 4.10 shows the τw(s) and D(s) distributions on the upper surface and wake, and also the
corresponding defects P (s) and K(s). Also shown is the friction-only defect Pfriction(s), which then also
indicates the remaining pressure defect Ppressure(s) as the difference from the total P (s).

Pfriction(s) =

∫ s

0
τw ds′ Ppressure(s) =

∫ s

0
−m

due
ds′

ds′ = P − Pfriction

We see that τw dominates the P (s) development over the front of the airfoil, but −m due/ds dominates
over the back of the airfoil. In the wake, the latter term decreases P (s) due to the wake’s favorable pressure
gradient, or due/ds>0. In contrast, K(s) is strictly monotonic since its only source term D(s) is everywhere
positive, including in the wake. In particular, the evolution of K(s) does not depend on the pressure gradient,
except indirectly via the pressure gradient’s relatively weak influence on D.

Figure 4.9: Computed pressure distributions on GAW-1 airfoil at α=5◦, Re=2 × 106. Dotted line
is the Simple Inviscid model. Solid line is the more realistic Wall Transpiration model. Bumps in
the solid line are due to separation bubbles and transition, discussed in Section 4.14.4.
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Figure 4.10: Distributions of boundary layer parameters for upper surface and wake of GAW-1
airfoil at α=5◦, Re=2 × 106. Transition occurs at s	 0.2c, where τw and D increase sharply. P
and K/V∞ in the far wake asymptote towards the profile drag/span D′. The jumps in P and K at
the trailing edge are from the bottom surface’s P and K (not shown) adding to the wake.

4.5.4 Integral defect / profile drag relations
As derived in Appendix C, the airfoil’s profile drag is equal to the far-downstream wake momentum defect
P∞. Noting that PTE in (4.37) is the sum of the upper and lower surfaces’ P (s) given by (4.36) at the trailing
edge, we then have the following result from (4.37). The D′ limit is indicated in the bottom of Figure 4.10.

D′ = P∞ =

∫
airfoil

τw ds +

∫
airfoil+wake

−m
due
ds

ds (4.40)

It is useful to compare the two terms in (4.40) with the friction+pressure drag components, both of which
will be further addressed in Chapter 5. Choosing the x-axis to be parallel to V∞ we have

D′ = D′
friction + D′

pressure

D′
friction ≡

∮
airfoil

τw · x̂ ds , D′
pressure ≡

∮
airfoil

−pw n̂ · x̂ ds (4.41)

where n̂ is the airfoil-surface outward unit normal, and τw is the surface viscous stress vector. Evidently,
the first integral in (4.40) can be interpreted as the friction drag, while the second integral must then be the
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remaining pressure drag part.

D′
friction 	

∫
airfoil

τw ds (4.42)

D′
pressure = D′ −D′

friction 	
∫

airfoil+wake

−m
due
ds

ds =

∫
airfoil+wake

δ∗
dp

ds
ds (4.43)

The friction drag estimate (4.42) is only approximate because the viscous surface force vector τw is very
nearly parallel to the surface, while an exact match with the friction drag definition (4.41) would require
τw to be parallel to the freestream V∞ along x̂. However, the angle between τw and V∞ is small over most
of the surface, especially for thin airfoils, so the friction and pressure drag component estimates (4.42) and
(4.43) are still useful conceptually. In particular, the integrals in (4.43) indicate that most of the pressure
drag is produced where there is an adverse pressure gradient in the presence of a large mass defect m or
displacement thickness δ∗. This combination typically occurs over the rear portion of the airfoil at high lift,
and can be clearly seen in the top of Figure 4.10 for s > 0.6c.

To relate the kinetic energy defect result (4.38) and (4.39) to profile drag, we first write P and K in terms
of the velocity defect Δu.

Δu ≡ u− ue (4.44)

P =

∫
(ue − u) ρu dn =

∫
−Δu ρu dn (4.45)

K =

∫
1
2

(
u2e−u2

)
ρu dn =

∫
−Δu

(
ue+

1
2Δu

)
ρu dn (4.46)

If Δu is very small compared to ue, then K and P become simply related to a good approximation.

K 	
∫
−Δu ue ρu dn = P ue (if Δu � ue) (4.47)

This occurs in the far-downstream wake where Δu goes to zero as the wake spreads and mixes out. And in
the far wake ue also approaches V∞, so that the two defects become exactly related far downstream.

K∞ = P∞V∞ (4.48)

Combining this with (4.40) then gives an alternative expression for the overall profile drag in terms of the
far-downstream wake kinetic energy defect, and also the dissipation everywhere.

D′ V∞ = K∞ =

∫
airfoil+wake

D ds (4.49)

This rather simple result has a power balance interpretation: The drag D′ must be balanced by an external
thrust force which moves at speed V∞ relative to the airmass, and thus exerts a power of D′V∞ which is all
dissipated in the viscous layers. The conclusion is that profile drag is uniquely related to viscous stresses
as quantified by the distribution of the dissipation integral D(s), and this dissipation contributes positively
to the drag everywhere since D ≥ 0 always. This strictly-positive dependence of drag on viscous forces
isn’t immediately obvious from the alternative momentum-based profile drag expression (4.40). Its second
pressure term always has some locally negative contributions to the total drag, and its first friction term also
has locally negative contributions in separated regions which exhibit reversed flow and hence τw<0.
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Invoking the friction and pressure drag definitions (4.41), the power-balance relation (4.49) gives an alter-
native relation for the friction plus pressure drag.

D′
friction + D′

pressure =
1

V∞

∫
airfoil+wake
D ds (4.50)

Since the D and D′
friction terms both depend only on the viscous stresses τ (s,n) via their definitions (4.34)

and (4.41), the remaining pressure drag D′
pressure term then also depends only on the viscous stresses. In this

power balance view, we can then conclude that the pressure field is not the cause of pressure drag, but rather
it’s a necessary additional power-transmission mechanism (the surface friction forces alone are insufficient)
from the body surface to the flow-field interior where the viscous power dissipation takes place. This has
implications for aerodynamic design as will be discussed in Section 4.11.4.

4.6 Self-Similar Laminar Boundary Layers

Most finite-difference methods for solving the boundary layer equations (4.21), to be summarized in Sec-
tion 4.10.2, actually solve transformed versions of these equations. One example is the following transfor-
mation n, u → η, U using the local normal-length and streamwise-velocity scales δ(s) and ue(s).

η(s,n) ≡ n

δ(s)
, U (s,η) ≡ u(s,n)

ue(s)
(4.51)

The local length scale δ(s) can be chosen arbitrarily. However, it is advantageous to define it such that it
is roughly proportional to the physical thickness of the boundary layer, so that the s–η computational grid
grows along with the layer, as shown in Figure 4.11 on the left. This makes the U (s,η) velocity profiles stay
within the s–η grid, which considerably simplifies the finite-difference solution procedure when it is applied
on this grid, instead of on the physical s–n grid.

One practical complication of the length scale choice δ=ne shown in Figure 4.11 is that the boundary layer’s
edge location is somewhat subjective, since u approaches ue only asymptotically. Alternative choices for δ
are δ∗, θ, etc., which have the advantage of being unambiguously defined.

( )ue s
General Flow Self−Similar Flow

( )δ

n

s

s

(    )u s,n

s

η δ= n /

(    )s,ηU uu/= e
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Figure 4.11: Local scaling transformation using δ(s) and ue(s) makes the s–η grid grow with the
boundary layer, so U (η) stays within this grid (left). The special case of power-law ue(s) (right)
makes all the U (η) profiles the same for each s location, which constitutes a self-similar flow.

Another feature of the transformation (4.51) is that it fundamentally simplifies the problem for a special
class of incompressible laminar boundary layer flows where ue(s) has a power-law form,

ue(s) = C sa (4.52)
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and C and a are specified constants. If for δ(s) we now make the specific choice

δ(s) =

√
νs

ue(s)
=

√
ν

C
s(1−a)/2 ≡ δFS(s) (4.53)

we have the Falkner-Skan Transformation [12], [11]. The resulting transformed boundary layer equations
no longer have any dependence on s, so their solution has the form U=U (η ; a). This is called a self-similar
boundary layer flow, in that all the velocity profiles are “similar,” or more precisely they have the same
normalized U (η) at each streamwise location s. The situation is pictured in Figure 4.11 on the right. The
U (η) shape does depend on the power-law exponent, however, so we get a different flow for each value of a.

The Falkner-Skan solution velocity profiles are shown in Figure 4.12 for several values of a. Their numerical
parameter values of interest are listed in Table 4.1. Note that because δFS is significantly smaller than the
boundary layer thickness ne, the η values are considerably greater than unity.
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Figure 4.12: Falkner-Skan velocity profiles, for several values of ue ∼ sa power-law exponent a.
Each U (η) profile describes the entire self-similar velocity field u(s,n ; a), via (4.51), (4.52), (4.53).
Numerical parameter values of interest for these profiles are listed in Table 4.1.

Although these solutions apply only to self-similar (power-law) laminar boundary layer flows, they reveal a
number of important characteristics which apply to more general laminar boundary layer flows. They also
confirm the general effects of pressure gradients which were qualitatively examined in Section 4.4.

• For favorable pressure gradients a > 0, the velocity profile is “full” near the wall, with a monotonic
curvature, relatively large skin friction coefficient cf values, and small shape parameter H values.

• For adverse pressure gradients a<0, the velocity profile is inflected, with a smaller skin friction and
large shape parameters H .

• There is a minimum value a 	 −0.0904, which is the incipient-separation case, with cf = 0 and
H 	 4.029 . For a less than this minimum, no physical self-similar solution of the boundary layer
equations (4.21) exists.

• Separated-flow solutions with cf < 0 and H > 4.029 do exist, but their a parameter is less negative
than the minimum value. They also exhibit reversed flow U <0 near the wall.
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• The small minimum achievable negative value of amin=−0.0904 indicates that laminar flows cannot
tolerate significant adverse pressure gradients, or equivalently, significant decreases in ue(s). For
example, over a doubled laminar run distance, s2/s1 = 2, the minimum tolerable velocity decrease is
ue2/ue1 = (s2/s1)

amin = 0.939 which is only a 6.1% deceleration.

Table 4.1: Falkner-Skan solution parameters for self-similar boundary flows with ue(s)=Csa. The
local Reynolds number is Rex=ue(s) s/ν. Parameters λ,T ,Fθ will be defined in Section 4.11.1.

a
δ∗

δFS

θ

δFS

H H∗ Re1/2x
cf
2

Re1/2x cD λ T Fθ

2.00000 0.47648 0.21775 2.18820 1.63101 1.71507 0.97666 0.09483 0.37345 -0.04742
1.00000 0.64790 0.29235 2.21622 1.62575 1.23259 0.71291 0.08547 0.36034 0.00000
0.60000 0.79760 0.35483 2.24783 1.62006 0.97532 0.57484 0.07554 0.34608 0.05036
0.30000 1.01961 0.44196 2.30702 1.61009 0.72574 0.44474 0.05860 0.32075 0.13672
0.10000 1.34787 0.55660 2.42161 1.59308 0.49657 0.33251 0.03098 0.27639 0.27882
0.00000 1.72080 0.66412 2.59109 1.57259 0.33206 0.26109 0.00000 0.22053 0.44105

-0.05000 2.11777 0.75148 2.81815 1.55196 0.21348 0.21867 -0.02824 0.16043 0.59294
-0.08000 2.67173 0.82973 3.22000 1.52916 0.10155 0.19031 -0.05508 0.08426 0.74351
-0.09043 3.49786 0.86814 4.02916 1.51509 0.00000 0.18014 -0.06815 0.00022 0.82179
-0.08700 4.14726 0.84989 4.87975 1.52470 -0.04678 0.18303 -0.06284 -0.03976 0.78515
-0.08000 4.75540 0.80734 5.89021 1.55216 -0.07361 0.18800 -0.05214 -0.05943 0.70399

4.6.1 Wedge flows
The Falkner-Skan solutions are strictly valid only for flows with the power-law edge velocity distribution.
It is fortuitous that such potential flows do indeed occur over simple geometries, the so-called wedge flows.
Three particular wedge flows are shown in Figure 4.13, and their boundary layer solution parameters are also
listed in Table 4.1. The case of a=1, called stagnation point flow, occurs in practically every aerodynamic
flow which has a body with a blunt leading edge, such as a common airfoil. For this flow we have δFS =√

ν/C , so that the boundary layer thickness near a stagnation point is locally constant.

e
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s

90

a = 1.0 a a= 0.0 = −0.0904

−17.820

Figure 4.13: Three particular wedge flows. Displacement effect not shown.

The case a=0, corresponding to a constant pressure and edge velocity, is commonly called flat plate flow
or Blasius flow. For this case we have δFS =

√
νs/C , so that the boundary layer thickness grows as

√
s. A

Blasius boundary layer is commonly used as a first approximation to laminar boundary layer flows which
have nearly-constant pressure or edge velocity over most of their extent.

The last case a = −0.0904 shown in Figure 4.13 is called incipient separation flow, which has zero skin
friction everywhere. This wedge flow is mainly a mathematical curiosity, since the top and bottom flows
occupy the same space above the plate which is physically impossible. A more plausible example is a
thin airfoil whose camber shape is such that it has the ue(s) ∼ s−0.0904 edge velocity distribution on one
side. However, since the incipient-separation boundary layer is theoretically infinitely sensitive to any ue(s)



Boundary Layer Analysis 73

perturbations and hence to geometric irregularities, such an airfoil flow would still be virtually impossible
to realize in practice. Incipient separation flow is also very susceptible to transition to turbulent flow, as will
be discussed in Section 4.14, and therefore can exist only at relatively low Reynolds numbers. In this case it
will have large viscous displacement effects, which will further complicate the realization of such a flow.

Besides providing physical insight and quantitative results for the special case of wedge power-law flows,
the Falkner Skan solutions are also very useful for “calibrating” approximate integral solution methods for
general boundary layer flows. These will be treated in Section 4.11.

4.7 Self-Similar Turbulent Boundary Layers
For the laminar case we saw that the n, u → η, U variable rescaling (4.51) led to a self-similar boundary
layer flow for a power-law edge velocity. A suitable corresponding rescaling for the outer layer of a turbulent
boundary layer is

η(s,n) ≡ n

δ(s)
, Δu+

(s,η) ≡ Δu(s,n)

uτ (s)
=

u(s,n) − ue(s)

uτ (s)
(4.54)

where the normalizing velocity is now the shear velocity uτ , defined in terms of the wall shear stress.

uτ ≡
√

τw
ρ

= ue

√
cf/2 (4.55)

Note also that this transformation addresses the defect velocity Δu = u−ue, rather than u itself.

Turbulent self-similar boundary layers, also known as equilibrium flows, are theoretically possible when
plotted in terms of the η,Δu+ variables, and were first demonstrated experimentally by Clauser[14]. They
are characterized by streamwise-constant values of the Clauser parameters G and β.

G ≡
∫
(Δu+)2 dn∫
−Δu+ dn

=
1√
cf/2

H − 1

H
(4.56)

β ≡ δ∗

τw

dp

ds
= − H

cf/2

θ

ue

due
ds

= − H

cf/2

λ

Reθ
(4.57)

An empirical relation between G and β for equilibrium flows is known as the G-beta locus.

G̃(β) 	 A (1 + Bβ)1/2 , A 	 6.7 , B 	 0.75 (4.58)

This can be considered to be the turbulent-flow equivalent of the H(λ) laminar self-similar flow relation
implied by Table 4.1. The form of (4.58) is based on theoretical physical models of the turbulent boundary
layer (see Coles [15]), and the values of its two constants A,B are obtained from measurements of equilib-
rium boundary layers from Clauser [14], Simpson et al [16], and others. Figure 4.14 shows three turbulent
equilibrium flows for three values of β.

Note that β > 0 is an adverse pressure gradient which results in a rapid thickening of the boundary layer,
while β<0 is a favorable pressure gradient with much slower growth. All the velocity profiles for each flow
all collapse to the same Δu+(η) curve for that flow. This is directly analogous to the self-similar laminar
wedge flows sketched in Figures 4.11 and 4.13, whose profiles all collapse to the normalized profiles shown
in Figure 4.12. The good fit to the experimental data validates the turbulent equilibrium flow concept.

The special case of a very large G corresponds to a turbulent incipient-separation boundary layer flow,
analogous to the laminar H=4.0 Falkner-Skan flow. Flows of this type have been used by Liebeck [17] to
design airfoils with the fastest-possible pressure recovery without separation, which results in extraordinarily
high maximum lift. A distinctive feature of Liebeck’s airfoils is a “concave” ue(s) distribution on the upper
surface, comparable to the G=14.17 case shown in Figure 4.14.
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Figure 4.14: Three turbulent self-similar (equilibrium) flows, each with a constant Clauser pressure
gradient parameter β, and corresponding constant G given by the G-beta locus (4.58). Each flow
has an initial momentum-thickness Reynolds number ueθ/ν = 1500 at s = 0. All the velocity
profiles of each flow collapse to a single normalized defect profile on the right plot. Experimental
data (symbols) is from Simpson et al [16].

4.8 Axisymmetric Boundary Layers

Boundary layer analysis readily applies to axisymmetric flows, such as the one shown in Figure 4.15. Ex-
tending the 2D profile drag analysis in Appendix C to the 3D case, or following the analysis in Section 5.6,
we obtain the 3D profile drag in terms of the far-downstream momentum area Θ∞.

Dp =

∫∫
(V∞ − u) ρu dS = ρ∞V 2

∞ Θ∞ (4.59)

Θ∞ ≡
∫∫ (

1− u

V∞

)
ρu

ρ∞V∞
dS (4.60)
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Figure 4.15: Boundary layer and wake of axisymmetric body.

For the axisymmetric 3D boundary layer and wake case, the integral (4.60) is best put into axisymmetric
form using the local width parameter

b(s,n) = 2π
(
R + n

√
1− (dR/ds)2

)
	 2π (R + n) (4.61)
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as shown in Figure 4.16. The body shape is given by the local radius function R(s), with R = 0 in the
wake. The second approximate form above makes the assumption that dR/ds � 1, which is reasonable for
slender bodies, although the exact form can be used with little complication.
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Figure 4.16: Transverse area element b dn inside boundary layer with lateral divergence, which is
quantified by lateral width parameter b(s,n).

The transverse area element now becomes dS = b dn, so that at any body location the momentum area, and
also the displacement and kinetic energy areas, can now be defined using the usual transverse coordinate n.

Δ∗
(s) ≡

∫ ne

0

(
1− ρu

ρeue

)
b dn (4.62)

Θ(s) ≡
∫ ne

0

(
1− u

ue

)
ρu

ρeue
b dn (4.63)

Θ∗
(s) ≡

∫ ne

0

(
1− u2

u2e

)
ρu

ρeue
b dn (4.64)

The integral equations which govern these integral areas have nearly the same form as in 2D,

dΘ

ds
=

cf
2
bw −

(
H + 2−M2

e

) Θ

ue

due
ds

(4.65)

dΘ∗

ds
= 2cD bavg −

(
2H∗∗

H∗
+ 3−M2

e

)
Θ∗

ue

due
ds

(4.66)

except for the lateral width friction factor bw = b(n=0) = 2πR, and the bavg dissipation factor which is a
local dissipation-weighted average over the boundary layer thickness. The shape parameters have the same
definitions as in 2D. For example, H=Δ∗/Θ, etc.

A significant simplification results if we replace n in the b(s,n) definition (4.61) with a representative height
in the shear layer, the rational choice being the usual 2D displacement thickness (see Figure 4.4).

b(s) 	 2π
(
R + δ∗

√
1− (dR/ds)2

)
	 2π (R+ δ∗) (4.67)

This approximate b(s) can now be taken outside of the integral area definition integrals (4.62)–(4.64), making
them simply related to the usual 2D thicknesses.

Δ∗ = δ∗b , Θ = θ b , Θ∗ = θ∗b (4.68)

The assumptions
bw 	 bavg 	 b (4.69)

can also be made if we assume δ∗ � R on the body, and bavg 	 δ∗ in the wake.
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Substitution of Θ = θ b etc. into (4.65) and (4.66) gives essentially the 2D integral equations,

dθ

ds
=

cf
2

−
(
H + 2−M2

e

) θ

ue

due
ds

− θ

b

db

ds
(4.70)

dθ∗

ds
= 2cD −

(
2H∗∗

H∗
+ 3−M2

e

)
θ∗

ue

due
ds

− θ∗

b

db

ds
(4.71)

except for the appearance of the lateral divergence terms involving db/ds. The streamwise changes in the
thicknesses θ, θ∗ resulting from these terms can be seen to be the result of a given amount of boundary
layer fluid being spread over a varying perimeter b(s). However, the perimeter changes do not affect the
overall amount of viscous fluid at any streamwise location, and hence cannot directly affect the overall
momentum and kinetic energy areas Θ,Θ∗. This can also be seen by the absence of explicit db/ds terms in
equations (4.65), (4.66). An important consequence is that the predicted far-downstream Θ∞ and hence the
drag will be insensitive to the details of the b(s) approximation (4.67) used here.

s

Θ( )s

( )sθ

Figure 4.17: Momentum area Θ(s) evolution along axisymmetric body and wake. Over the rear of
the body, the momentum thickness θ(s) increases faster than in 2D, due to the viscous fluid flowing
onto a progressively smaller perimeter.

4.9 3D Boundary Layers

Three dimensional boundary layer flows can be quite complex, and a complete treatment of 3D boundary
layer theory is far out of scope here. Only a general overview of the key new effects will be given here. See
McLean [18] for a much more comprehensive discussion.

4.9.1 Streamwise and crossflow profiles
A 3D boundary layer features non-planar velocity profiles V(n), such as the one shown in Figure 4.18.
Traditional notation uses s1, s2, n as the local cartesian coordinates (instead of s, �, n), with s1 parallel to
the edge velocity vector Ve, and s2 perpendicular to it. Within the boundary layer we then have

V(n) = u1 ŝ1 + u2 ŝ2 (4.72)

where u1(n) is the streamwise profile, and u2(n) is the crossflow profile which appears only in 3D boundary
layers. The presence of crossflow means that the wall shear stress vector τw is in general not parallel to
the local edge velocity. The lines parallel to τw are called wall streamlines, which differ from the usual
potential-flow streamlines which are parallel to Ve.

Crossflow is typically generated by a transverse pressure gradient ∂p/∂s2 which is felt by the fluid over the
entire boundary layer thickness. The slower-moving fluid within the boundary layer curves in response more
strongly than does the outer potential flow, and thus forms the crossflow profile some distance downstream,
as shown in Figure 4.18 on the right. This is essentially the same mechanism as the one shown in Figure 4.6,
but here it occurs in the transverse direction.
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Figure 4.18: 3D Boundary layer at one surface location, with streamwise and crossflow profile
components u1, u2. Crossflow is primarily the result of a transverse pressure gradient.

4.9.2 Infinite swept wing
Swept-wing potential flow

An infinite swept cylindrical body, such as a wing for example, is shown in Figure 4.19. The perpendicular
and parallel freestream velocity components are

V⊥ = V∞ cos Λ

V‖ = V∞ sin Λ

where Λ is the sweep angle. The x, z surface coordinates are chosen such that z runs spanwise, with x being
the usual 2D-like chordwise coordinate.

attachment line
z

x potential flow
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Figure 4.19: Potential flow over infinite swept cylinder or wing, with x, z surface coordinates.

Since there is no special z location on the wing, we must have

∂()

∂z
= 0

for all flow quantities. In the potential flow, the z-momentum equation which governs we then simplifies to

ρeVe · ∇we = −∂p

∂z
= 0 (4.73)

so that we is constant everywhere in the flow-field, and must be equal to its freestream value.

we = V‖ (4.74)
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The local pressure is given by the isentropic relation (1.112), or by the Bernoulli equation (1.112) for the
case of low speed flow.

pe(x) = p∞

(
he
h∞

)γ/(γ−1)

= p∞

[
1 +

γ−1
2

M2
⊥

(
1− u2e

V 2
⊥

)]γ/(γ−1)

(4.75)

pe(x) = p∞ +
1

2
ρ
(
V 2

⊥ − u2e
)

(low speed flow) (4.76)

In either case, the spanwise velocity we has no influence on the pressure, and hence no influence on the lift.
It is therefore appropriate and useful to define “perpendicular” pressure and lift coefficients referenced to
the perpendicular dynamic pressure,

Cp⊥ =
pe−p∞

1
2ρ∞V 2

⊥

c�⊥ =

∫ 1

0
ΔCp⊥ d

(
x

c⊥

)
where ΔCp⊥ is the pressure coefficient difference between the lower and upper surface of the airfoil, and c⊥
is the perpendicular chord. These quantities correspond to those of a 2D flow in which the spanwise velocity
V‖ is absent. So for example, Cp⊥(x ;α⊥) and c�⊥(α⊥) on a high aspect ratio swept wing can be obtained from
2D calculations or 2D experimental data, with

α⊥ = arcsin
Vvert
V⊥

being the angle of attack seen in the perpendicular plane, and Vvert is net vertical freestream velocity reduced
by the local 3D induced downwash velocity.

Swept-wing boundary layer flow

With the ∂()/∂z = 0 condition, the 3D boundary layer equations for low speed flow, with the kinematic
eddy viscosity νt = μt/ρ invoked, simplify as follows.

∂u

∂x
+

∂v

∂y
= 0 (4.77)

u
∂u

∂x
+ v

∂u

∂y
=

∂

∂y

(
(ν + νt)

∂u

∂y

)
+ ue

due
dx

(4.78)

u
∂w

∂x
+ v

∂w

∂y
=

∂

∂y

(
(ν + νt)

∂w

∂y

)
(4.79)

Evidently (4.77) and (4.78) are the 2D boundary layer equations in x, y, decoupled from the z-momentum
equation (4.79) and the spanwise w velocity. As pointed out in the previous section, ue(x) and the pressure
are the same as in a 2D flow with we absent. Hence, the chordwise velocities u, v governed by (4.77),(4.78)
are also the same as in 2D flow, and are unaffected by the spanwise flow component.

Because neither the local potential flow nor the boundary layer flow are affected by the V‖ spanwise veloc-
ity component, the overall conclusion is that the relevant airfoil shape which determines the aerodynamic
characteristics of a swept high aspect ratio wing is perpendicular to the wing, not parallel to the freestream
direction. In particular, adding a spanwise freestream velocity component to a given wing does not affect its
surface pressures and lift, and also does not affect its boundary layer its separation resistance or chordwise
separation location for the same perpendicular-plane angle of attack. This is shown in Figure 4.20.
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Figure 4.20: Adding a spanwise freestream velocity component V‖ does not affect a wing’s lift, or
the characteristics of a laminar boundary layer projected onto the perpendicular plane. A turbulent
boundary layer will change somewhat from the larger Reynolds number’s effect on the turbulence.

The independence of the chordwise u(x,y) velocity from the spanwise w(x,y) velocity is strictly valid only
for laminar flow. For turbulent flow, the spanwise velocity will increase the effective Reynolds number of
the turbulence, and hence will have some effect on νt, so the decoupling isn’t perfect. Nevertheless, since
Reynolds number effects on turbulence are weak, the conclusions are very nearly correct also for turbulent
flow. McLean [18] discusses the effects of wing sweep on boundary layers in much more detail.

4.9.3 Crossflow gradient effects
Although the infinite swept wing has a 3D boundary layer with crossflow, one simple explanation why the
crossflow is immaterial to the boundary layer development is that there is no crossflow gradient, in the
spanwise z direction in that case. In contrast, in more general 3D boundary layers with nonzero crossflow
gradients, such as the one sketched in Figure 4.21, the presence of the crossflow will certainly have an effect.

In general, any lateral gradient in the crossflow will cause lateral convergence/divergence effects as in the
axisymmetric case, except here the convergence or divergence occurs only near the wall rather than over the
whole boundary layer thickness. However, the overall effect is the same, with the boundary layer growth
being increased or decreased relative to the 2D case without crossflow. Figure 4.21 shows a case with
crossflow convergence, causing an additional boundary layer thickening. Crossflow divergence would have
the opposite effect.

s1

Crossflow velocities in upstream view
s2

Upward velocity bias from crossflow convergence
            increases boundary layer growth

Growth of 2D boundary layer
without crossflow convergence

Figure 4.21: Crossflow convergence increases boundary layer growth compared to a 2D boundary
layer with the same streamwise profile. Crossflow divergence would have the opposite effect.
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4.10 2D Boundary Layer Solution Methods – Overview

4.10.1 Classical boundary layer problem
The classical incompressible 2D wall boundary layer problem has the following inputs and outputs.

Inputs:

ν or Reref viscosity or Reynolds number
ue(s) edge velocity distribution
u0(n), v0(n) initial velocities at s0

Outputs:

u(s,n), v(s,n) velocity field
δ∗(s), θ(s) . . . thicknesses, from u(s,n)
H(s), cf (s) shape parameter, skin friction

The inputs are quantities which appear in the boundary layer equations (4.21) and boundary conditions (4.22).
The outputs are the unknowns in these equations, or functions of these unknowns.

The initial velocities u0, v0 at the first location s0 (shown in Figure 4.22) are not needed if this is a leading
edge or stagnation point, which is the most common situation. In this case they can be taken from one of the
self-similar solutions treated earlier.

4.10.2 Finite-difference solution methods
The most general solution approach is the grid-based finite-difference method, sketched in Figure 4.22. The
solution procedure solves for all the u, v unknowns at one s station at a time, starting at the first s0 station.
This solution procedure is known as space marching. For details, see Cebeci and Smith [19], Cebeci and
Bradshaw [20].
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Figure 4.22: Solution of boundary layer equations on a finite-difference grid.

For the general boundary layer problem, the space-marching finite-difference solution procedure is accurate
and effective, but requires considerable computational effort. For acceptable accuracy for laminar flows, it
requires at least 20 or more grid nodes across the layer at each surface point, with the three u, v, τ unknowns
per grid node. Turbulent flows may require 80 or more grid nodes per surface point. A typical ue(s) dis-
tribution, over an airfoil surface say, might require over 100 surface points, resulting in many thousands of
unknowns for the entire 2D boundary layer. When the boundary layer is to be solved simultaneously with
the potential flow, as will be described in Section 4.12.2, this large total number of unknowns is prohibitive.
Another drawback of the finite-difference method is that it is purely numerical, and gives no direct insight
into boundary layer behavior. An alternative approach is taken by the integral methods, described next.

4.10.3 Integral solution methods
Instead of computing the detailed u, v, τ (s,n) fields, integral methods determine only the integral thicknesses
and key shear quantities, namely δ∗, θ, cf , cD(s), etc. This relatively small number of unknowns makes the
integral methods very economical, but a drawback is that their solutions must always be approximate, in
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that they cannot produce theoretically exact solutions of the laminar boundary layer equations (4.21). For
turbulent flows this is not really an issue, since even nominally “exact” solutions of equations (4.21) still
require turbulence models for μt which are inherently approximate. In practice, the simpler and much more
economical integral methods are sufficiently accurate for a large majority of aerodynamic flow prediction
applications, for both laminar and turbulent flows.

To compute the integral thicknesses δ∗, θ, θ∗(s), integral methods solve either the von Karman equation (4.28)
or the kinetic energy equation (4.35), or both as in some advanced methods. In effect, they seek to evaluate
the integrals in (4.36) and/or (4.38) in some manner. Here we will focus on solving only the von Karman
equation (4.28). This equation is not integrable as written, because it contains the terms cf and H which are
additional unknowns, and therefore require two additional closure relations or functions to relate them to the
primary variables θ, ue, ν. How these additional unknowns are determined is primarily what distinguishes
the many different integral calculation methods which have been developed to date.

4.11 Integral Boundary Layer Solution

4.11.1 Thwaites method
Assumptions and formulation

The Thwaites method [21], [11], [12] solves the classical low-speed laminar boundary layer problem by as-
suming specific functional forms for cf , H , and the entire righthand side of the von Karman equation (4.28).
This is first manipulated by multiplying 2Reθ×[equation (4.28)], where

Reθ(s) ≡ ρeueθ

μe
=

ueθ

ν
(4.80)

is the local momentum thickness Reynolds number. We also set M2
e =0 for low speed flow. The result is

ue
ν

d(θ2)

ds
= 2

[
T − (H + 2 )λ

]
≡ Fθ (4.81)

T ≡ Reθ
cf
2

, λ ≡ θ2

ν

due
ds

(4.82)

where T is a normalized wall shear, and λ is a normalized edge velocity gradient or equivalently a normal-
ized pressure gradient. For the power-law flow case ue = Csa these are also products of Falkner-Skan
solution parameters, and also of the normalized velocity profile derivatives at the wall.

T =
θ

δFS

Re1/2x
cf
2

=
dU

d(n/θ)

∣∣∣∣
w

, λ =
θ2ue
νs

s

ue

due
ds

=
θ2

δ2FS

a =
d2U

d(n/θ)2

∣∣∣∣
w

(4.83)

Their numerical values are listed in Table 4.1. Also listed is the entire righthand side parameter combination
Fθ in the manipulated von Karman equation (4.81).

For power-law flows, all the Falkner-Skan parameters (columns of Table 4.1) are functions of the expo-
nent a, or more generally functions of each other. The key assumption of Thwaites’s method is that the
H(λ),T (λ),Fθ(λ) relations are valid for any boundary layer flow, not just a power-law flow. In effect this
assumes that the boundary layer profile U (η ; s) at each s location has the same shape as one of the Falkner-
Skan profiles. That is, if λ is known at a location s in a general flow, then H,T ,Fθ at that location are also
immediately known from the corresponding row in Table 4.1.
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Explicit integration

Rather than use the Falkner-Skan solutions in Table 4.1, Thwaites examined a number of other theoretical
flows to quantify these functions. For Fθ he chose

F̃θ(λ) = 0.45 − 6λ (4.84)

which doesn’t quite match the values in Table 4.1, but it is close. His H and T were provided in tabulated
form. They are shown in Figure 4.23, and are closely approximated by the following convenient curve fits.

H̃(λ) = 2.61 − 4.1λ+ 14λ3 +
0.56λ2

(λ+ 0.18)2
(4.85)

T̃ (λ) = 0.220 + 1.52λ− 5λ3 − 0.072λ2

(λ+ 0.18)2
(4.86)
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Figure 4.23: Thwaites’s values for parameters H and T versus λ, plotted as symbols. Curve-fit
functions H̃(λ) and T̃ (λ) given by (4.85) and (4.86) are plotted as solid lines. Falkner-Skan U (η)

profile shapes corresponding to the H values are drawn on top.

Strictly speaking, equation (4.81) could be numerically integrated using only the T̃ (λ) and H̃(λ) functions
inserted in its righthand side. However, the fact that their combination Fθ(λ) is very nearly linear allows a
simpler explicit solution. When the approximate F̃θ(λ) given by (4.84) is inserted for the entire righthand
side of equation (4.81), and the entire equation is then multiplied by νu5e , its lefthand side becomes a perfect
differential which can then be explicitly integrated.{

ue
ν

d(θ2)

ds
= 0.45 − 6λ

}
ν u5e

d(u6e θ
2)

ds
= 0.45 ν u5e

θ2(s) =
1

u6e(s)

[
u6e(s0) θ

2
(s0) + 0.45 ν

∫ s

s0

u5e(s′) ds′
]

(4.87)
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If ue(s) and ν are provided, the corresponding θ(s) can be immediately obtained by evaluation of the integral
in (4.87), numerically if necessary. This θ(s) is then used in the closure relations to obtain the remaining
quantities of interest.

λ(s) =
θ2(s)

ν

due(s)

ds
(4.88)

Reθ(s) =
ue(s) θ(s)

ν
(4.89)

H(s) = H̃(λ(s)) (4.90)

cf (s) =
2

Reθ(s)
T̃ (λ(s)) (4.91)

In general, the integral in (4.87) is evaluated from some initial location s0 where θ(s0) must be specified. But
if this s0 is the sharp leading edge of a Blasius flow, then θ(s0)=0. Alternatively, if s0 is at a blunt leading
edge stagnation point, then ue(s0)=0, in which case θ(s0) in (4.87) is immaterial. Hence, in both of these
typical situations no initial data is required.

Reynolds number independence

It is interesting to note that the boundary evolution predicted by the Thwaites formula (4.87) with zero initial
values at s0 obeys the simple scalings

θ(s) ∼
√
ν ∼ 1/

√
Re , cf (s) ∼

√
ν ∼ 1/

√
Re (4.92)

with λ(s) and H(s) completely unaffected by the viscosity, or more generally by the Reynolds number.
The conclusion is that aside from the simple

√
Re scalings, boundary layer evolution and in particular the

separation location is independent of Reynolds number, as sketched in Figure 4.24. Only the shape (but
not the magnitude) of the input ue(s) distribution matters. This conclusion also holds for effectively exact
finite-difference solution methods.

Re = 1M

Re M= 4

θ

H

s

s

s

ue

cf

Re = 1M
Re M= 4

Figure 4.24: For a prescribed ue(s), the resulting shape parameter H(s) distribution of a laminar
boundary layer is independent of Reynolds number. The skin friction and momentum thickness
distributions are also unaffected except for simple cf (s), θ(s) ∼ 1/

√
Re scalings.

However, the assumption that ue(s) is fixed and independent of Reynolds number is not exactly correct for a
fixed body geometry. As examined in Chapter 3, the overall potential flow-field and hence ue(s) are affected
by the viscous displacement mechanism. The resulting changes to ue(s) themselves scale as δ∗ ∼ 1/

√
Re

and hence are very small, but only if the flow is attached. So in actual applications the Reynolds number
independence of laminar flow is only approximately correct, and only in the absence of flow separation.
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4.11.2 White’s equilibrium method
The Thwaites method’s functions Fθ(λ), T̃ (λ), and H̃(λ) are valid only for laminar flow. To integrate the
von Karman momentum equation (4.28) for a turbulent boundary layer, it is necessary to provide turbulent
closure relations for cf and H , ultimately in terms of the primary unknown θ and the inputs ν and ue. Such
an approach is described by White [22], mainly for illustrative purposes. It is summarized below.

A suitable turbulent skin-friction relation is the Coles formula, which is a fit to equilibrium flow data.

c̃f (H,Reθ) =
0.3 e−1.33H

(log10 Reθ)
1.74+0.31H

(4.93)

A suitable turbulent shape parameter relation is the G-beta locus (4.58), after replacement of G and β by
their definitions (4.56), (4.57). Squaring both sides and further multiplying through by cf/2A2 gives the
more convenient form (

H−1

AH

)2

=
cf
2

− BH Λ (4.94)

Λ ≡ θ

ue

due
ds

=
λ

Reθ
= −cf

2

β

H
(4.95)

where Λ is a new pressure-gradient parameter. This is a scaled version of Thwaites’s λ, and is more relevant
for turbulent flows.

Equations (4.93) and (4.94) are two constraints between the four parameters H, cf ,Λ, Reθ . If Λ and Reθ are
specified, these equations can be numerically solved (e.g. by Newton iteration) for the corresponding H and
cf values. Hence, we in effect have

Λ, Reθ →
{

eq.(4.93)
eq.(4.94)

}
→

{
c̃f (Λ,Reθ)

H̃(Λ,Reθ)
(4.96)

which are the direct replacements of Thwaites’s T̃ (λ) and H̃(λ) closure functions.

We can now insert the c̃f and H̃ functions (4.96) into the von Karman equation (4.28), putting it into the
following functional form.

dθ

ds
=

1

2
c̃f (Λ,Reθ) −

(
H̃(Λ,Reθ) + 2

)
Λ = f(θ, ue, ν) (4.97)

If ν and ue(s) are provided, then this can be numerically integrated for the θ(s) distribution, usually starting
from the transition location str. The initial value θ(str) is also required, and typically would be obtained
from the last laminar θ value at str.

In contrast to the laminar boundary layer Reynolds number independence discussed earlier, turbulent bound-
ary layer evolution is affected by Reynolds number. This can be seen from the explicit appearance of
the Reynolds number in the H̃(Λ,Reθ) function (4.96). In general, increasing Reθ tends to decrease H
slightly, giving slightly greater resistance to adverse pressure gradients. Consequently, increasing the overall
Reynolds number of a turbulent flow tends to delay separation and increase maximum lift.

4.11.3 Two-equation methods
Thwaites’s method and White’s equilibrium method are examples of one-equation integral methods, mean-
ing that they integrate one differential equation to obtain the solution. One of their main drawbacks is that
they cannot correctly represent the behavior of a separated boundary layer. For Thwaites’s method this can
be seen by examining the H and λ column values in Table 4.1. For adverse pressure gradients (λ< 0) this
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true H(λ) function is actually two-valued, with one H<4 value which is the attached solution, and another
H > 4 value which is the separated solution. Even if the curve-fit H̃(λ) expression (4.85) were somehow
modified to have this two-value form, it would be impossible to use in the H evaluation step (4.90), since
there’s no way to know whether to choose the attached or the separated H̃ value for any given negative λ
value.

This problem is eliminated by the so-called two-equation integral methods, such as those of LeBalleur [23],
Whitfield et al [24], and Drela et al [6]. These methods integrate both the von Karman equation (4.28)
for θ(s), and also the kinetic energy equation (4.35) for θ∗, or equivalently for H∗ = θ∗/θ. The latter is
actually obtained more conveniently from the combination [ equation (4.35) ]/θ∗ − [ equation (4.28) ]/θ
which produces the kinetic energy shape parameter equation.

1

H∗

dH∗

ds
=

2cD
H∗

− cf
2

+

(
H − 1− 2H∗∗

H∗

)
θ

ue

due
ds

(4.98)

Two equation methods assume that H and H∗ are uniquely related via a H̃∗(H) correlation function, so that
equation (4.98) above is in effect an ODE for H(s). For laminar flow, the H̃∗(H) function is implied by
Table 4.1. For turbulent flow, a H̃∗(H,Reθ) function is obtained from the self-similar turbulent profiles shown
in Figure 4.14, but actually differs very little from the laminar version. Since H is calculated directly in the
two-equation methods, there is no ambiguity as to whether the flow is attached or separated at any given
location. In these methods λ or Λ is not needed and is not used explicitly.

Another type of two-equation method is developed by Head [25] and Green et al [26], and is based on the
entrainment equation, which is an integral form of the mass equation. The behavior of entrainment-based
methods is similar to those of the kinetic energy-based methods, and the details are not important here.

Besides enabling the representation of a separated boundary layer, two-equation methods are considerably
more accurate than the one-equation methods, especially for turbulent flow. Since their derivation makes the
same basic correlation assumptions as the one-equation methods, i.e. the Falkner-Skan solutions for laminar
flow and the equilibrium profiles and G-beta locus for turbulent flow, presenting them in detail here would
add little besides complexity. The reader is referred to references for the derivation details.

4.11.4 Viscous dissipation relations
In Section 4.5.4, viscous dissipation was shown to be ultimately responsible for total profile drag, including
the pressure drag component. Since dissipation is therefore a key quantity to be minimized, it’s useful to
examine how the dissipation coefficient cD depends on the other boundary layer parameters. For self-similar
laminar flow, this dependence is given by Table 4.1. For self-similar turbulent flow, it can be obtained from
the kinetic energy shape parameter equation (4.98) together with the G-beta locus (4.58) as follows.

Since turbulent equilibrium flows have a streamwise-constant G, they must have a very nearly constant H
and hence also a constant H∗ if we neglect the slight streamwise variation of the turbulent

√
cf/2 factor in

the G definition (4.56).

dH∗

ds
	 0 (equilibrium flow) (4.99)

We can now obtain an expression for equilibrium-flow cD from (4.98) by dropping the dH∗/ds term and
eliminating θ/ue due/ds using the G-beta locus (4.94). The H∗∗ term is also dropped since this is typically
small, and is exactly zero in incompressible flow.

c̃D(H,Reθ) =
H∗

2

[
cf
2

(
1− H−1

BH

)
+

1

A2B

(
H−1

H

)3
]

(equilibrium flow) (4.100)
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Aside from additional minor non-equilibrium corrections, expression (4.100) is in fact used in two-equation
methods as a closure function for cD in the ODE (4.98) to enable its integration. It is shown in Figure 4.25
for several momentum thickness Reynolds numbers. Also overlaid is the laminar c̃D(H,Reθ) function for
the laminar Falkner-Skan flows, tabulated in Table 4.1. The turbulent cD is seen to have a fairly weak
dependence on Reθ , while the laminar cD ∼ 1/Reθ dependence is much stronger.
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Figure 4.25: Dissipation coefficient for self-similar flows. Laminar values are listed in Table 4.1.
Turbulent values are given by equation (4.100). Weak pressure gradients which displace H slightly
from the flat plate value have little effect on cD.

For any given local Reθ , the minimum dissipation occurs very close to the zero pressure gradient (flat-plate)
H value, so that the dissipation is relatively insensitive to small changes in H , i.e. to weak favorable or
adverse pressure gradients. The laminar cD is also very nearly independent of pressure gradient.

The weak dependence of cD on pressure gradients (assuming fixed transition locations) indicates that the
dissipation D(s) = ρeu

3
e cD is primarily determined by the cube of the edge velocity ue. And since the inte-

grated D(s) distribution gives the profile drag via expression (4.49), airfoils which have strong “overspeeds”
or regions of high velocity are expected to have large integrated dissipation and high drag. Conversely, low
drag is likely to be achieved by airfoils which have more uniform velocity distributions.

Note that since expression (4.49) captures the sum of friction and pressure drags, this argument applies
to both the friction and pressure drag components. Attempting to reduce the pressure drag “directly,” for
example by reducing pressures on front-facing surfaces and increasing pressures on aft-facing surfaces, is
bound to be futile if viscous dissipation is not reduced in the process.

Another important role of the dissipation coefficient is that it controls the maximum tolerable adverse pres-
sure gradient which a boundary layer can sustain with a constant margin from separation, or equivalently
with a nearly constant H and H∗. In this situation the shape parameter equation (4.98) with dH∗/ds= 0
can be viewed as an equation for the most negative tolerable velocity gradient.

Λmin =

(
θ

ue

due
ds

)
min

=
1

H−1

(
cf
2

− 2cD
H∗

)
	 −0.65 cD (4.101)

The second approximate value in (4.101) is valid for turbulent flow in very strong adverse pressure gradients
near separation where H	3, H∗	1.5, and cf is relatively negligible.

One implication of (4.101) is that the adverse pressure gradient capability of the boundary layer can be
increased by increasing its dissipation, preferably away from the surface so that the offsetting cf term
in (4.101) is not increased as much. One common technique is by the use of vortex generators [27], which
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increase dissipation by introducing streamwise vortices into the boundary layer at some distance from the
wall.

4.12 Coupling of Potential Flow and Boundary Layers

4.12.1 Classical solution
The classical boundary layer problem is schematically shown in Figure 4.26. An inviscid (potential) flow
problem is first solved with the displacement effect ignored. This then provides the edge velocity ue(s)
distribution which is the input to one of the boundary layer solution methods presented in this chapter. The
outputs are the various viscous variables of interest, θ(s), δ∗(s), cf (s), etc.

(  )
wall BC ue

rφ
= s

9 9φ /
=

9 9φ / 0n
Potential flow problem 

for

θ s( ) s( )δ, ∗
Boundary layer problem

, using s( )uefor etc. ,

Figure 4.26: One-way coupling from the potential flow problem to the classical boundary layer
problem. The boundary layer solution fails if separation is encountered.

Although conceptually simple, this solution approach has two shortcomings:

1. The potential flow solution ignores the viscous displacement effect. Hence it cannot predict the grad-
ual loss of lift as stall is approached, which is illustrated in Figure 3.8. Also, if the displacement
effects are large, then the specified ue(s) is inaccurate and the resulting boundary layer solution and
predicted profile drag are suspect.

2. If the specified ue(s) leads to separation, the boundary layer solution will fail at that point, and sub-
sequent downstream integration is impossible. This behavior was already observed for self-similar
laminar flows, which have no solution for a < −0.0904 which is the incipient-separation case. For
a general (not power-law) flow, there is also no solution at the first streamwise location where sep-
aration is encountered. This occurs with finite-difference and two-equation integral methods, and is
known as the Goldstein separation singularity [28]. The consequence is that the boundary layer solu-
tion cannot proceed downstream into the separated flow region. Ironically, the simpler one-equation
methods do not have this singularity, essentially because their physics modeling is too inadequate to
represent it. This is not really an advantage, since they become wildly inaccurate or problematic in
other ways once separation is indicated. For example, if λ < −0.09 in Thwaites’s method, which
roughly indicates separation, its closure functions become undefined.

4.12.2 Viscous/inviscid coupling
The solution failure at separation is traceable to the neglect of the viscous displacement mechanism. In
brief, there is one unique value of due/ds which is admissible by the boundary layer at the separation point,
so this value cannot be imposed via the input ue(s). The problem is eliminated if the displacement effect is
incorporated into the potential flow problem, which is termed viscous/inviscid coupling. The boundary layer
flow can now influence the potential flow’s ue(s) distribution, and can thus enforce the requirement of the
unique due/ds value at the separation point.

A practical consequence of incorporating a viscous displacement model into a potential flow calculation
is that now the potential and the boundary layer flow problems are two-way coupled, as diagrammed in
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Figure 4.27. Specifically, the potential and boundary layer problems now depend on each other and cannot
be solved in the simple sequential manner of the classical case diagrammed in Figure 4.26.

A possible solution approach is to iterate between the potential and boundary layer equations, as suggested
by the dotted arrows in Figure 4.27, which is known as direct viscous/inviscid iteration. This is not satis-
factory since it tends to be unstable, as analyzed by Wigton and Holt [29]. The boundary layer problem
will also fail outright if separation is encountered. Other iteration schemes have been proposed, such as the
one by Veldman [30] and LeBalleur [23], with various degrees of success. The most reliable approach has
been to solve the inviscid and viscous equations simultaneously by the Newton method. The XFOIL [5]
and MSES [6] codes are two 2D implementations of this approach. Example results have been shown in
Figures 3.6, 3.7, 4.9, 4.10. An example of simultaneously-coupled 2D viscous and 3D inviscid methods is
the TRANAIR code, as reported by Bieterman et al [31].

wall BC
φ

s
9 9φ /

=
9 9φ / n

θ s( ) s( )δ, ∗

ρ

Boundary layer equations

Potential flow equations 

(  )rφ θ s( ) s( )δ, ∗ ...,

,

Viscous / Inviscid Flow Problem  for

ue

s
9 9φ /

m

dm ds/

Δ2 = 0

ODEs in

Figure 4.27: Two-way coupling between potential-flow equations and boundary layer equations
occurs if a displacement model is incorporated into the potential flow problem. The direct vis-
cous/inviscid iteration suggested by the dotted arrows will fail if separation is present. A simulta-
neous solution of all the equations is most effective at avoiding this solution failure.

4.13 Profile Drag Prediction

The prediction of profile drag Dp can be performed using a number of different approaches. These are
presented in the subsequent sections in order of increasing accuracy and also increasing cost and complexity.

4.13.1 Wetted-area methods
The so-called wetted-area methods are based on the drag of a zero-thickness flat plate with a constant
freestream edge velocity, ue = V∞. In this case there is no pressure drag, so that the profile drag consists
entirely of friction drag which can be conveniently given in terms of an average skin friction coefficient C̄f

based on the freestream dynamic pressure q∞.

Dp =

∫∫
τw dS = q∞ Swet C̄f (flat plate) (4.102)

q∞ ≡ 1

2
ρ∞V 2

∞ (4.103)

C̄f (Re�) ≡ 1

�

∫ �

0
Cf (x) dx (4.104)

Here, � is the streamwise length of the boundary layer flow, which also defines the streamwise-length
Reynolds number Re�. The wetted area Swet is defined as the surface area in contact with the moving
fluid, which for the flat plate is twice the planform area. The average skin friction coefficient is obtained



Boundary Layer Analysis 89

from Blasius flow and experimental data for the laminar and turbulent cases.

C̄fl
=

1.328

Re1/2�
(fully laminar) (4.105)

C̄ft =
0.455

( log10 Re� )
2.58 (fully turbulent) (4.106)

C̄f = max

(
C̄fl

, C̄ft −
Rextr/320−39

Re�

)
(transition at str) (4.107)

Re� =
ρ∞V∞ �

μ∞

, Rextr =
ρ∞V∞ str

μ∞

(4.108)

These C̄f functions are shown in Figure 4.28. The added transition-location term in (4.107) is based on the
formulation of Schlichting [12], and depends on the transition-length Reynolds number Rextr .
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Figure 4.28: Average skin friction coefficient for constant-pressure boundary layers versus flow-
length Reynolds number Re�. Thin turbulent lines correspond to different transition-location
Reynolds numbers Rextr . Symbols are fully-turbulent experimental data from Osterlund [32].

For bodies other than flat plates, the profile drag is assumed to be given by

Dp = q∞ Swet C̄f Kf (4.109)

or CDp ≡ Dp

q∞Sref
=

Swet

Sref
C̄f Kf (4.110)

where Kf ≥1 is an empirical form factor which depends on the shape of the body, and possibly also on the
angle of attack and Mach number. Hoerner [33] gives extensive data for form factor values for a variety of
2D and 3D body shapes.

The main shortcoming of the wetted-area profile drag estimate (4.109) is that it’s not really predictive, but
is in effect a means of experimental drag interpolation or extrapolation via the assumption that the form
factor Kf does not change much over the range of body shapes being considered. If modifications in the
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body shape change Kf in some unknown way which is not accounted for, then the resulting profile drag
predictions for the modified body shapes will be inaccurate. In other situations where novel or unusual body
shapes are being examined and drag data is not available, then the necessary Kf values must be guessed and
the resulting drag estimates become uncertain.

4.13.2 Local-friction and local-dissipation methods
To determine the physical basis of the form factor, we can compare the wetted-area drag formula (4.110)
with the exact profile drag formula (4.40) based on the integral momentum equation.

Sref CDp = Swet C̄f Kf (4.111)

Sref CDp =

∫∫
qe
q∞

Cf dSwet +

∫∫
δ∗

dCp

ds
dSwet +

∫∫
δ∗

dCp

ds
dSwake (4.112)

Evidently the form factor Kf accounts for the larger local dynamic pressures via the ratio qe/q∞ inside the
first friction integral in (4.112), and also accounts for the remaining two surface and wake integrals which
represent roughly the pressure drag. Clearly, Kf represents fairly complex flow physics, and consequently
has been resistant to being reliably estimated from only potential-flow quantities via first principles. For
example, one might attempt including a local dynamic pressure in the wetted area integral

Sref CDp

?
= C̄f

∫∫
qe
q∞

dSwet (4.113)

but this will significantly under-predict the drag for most bodies of finite thickness.

Sato [13] has made some progress in simple profile drag estimation by employing the profile drag formula
as related to the kinetic energy equation (4.49), which can be written as follows.

Sref CDp =

∫∫
ρeu

3
e

q∞V∞
cD dSwet +

∫∫
ρeu

3
e

q∞V∞
cD dSwake (4.114)

Noting that the dissipation coefficient cD is very insensitive to pressure gradients (much less so than Cf ), we
can interpret Kf as a measure of the average ρeu

3
e/ρ∞V 3

∞ ratio over the surface and the wake. This leads to
a fairly reliable profile drag estimation formula

Sref CDp = C̄f

∫∫
ρeu

3
e

ρ∞V 3
∞

dSwet (4.115)

which has the same form as (4.113), but with a local ρeu3e weighting rather than ρeu
2
e . This still has the great

simplicity of requiring only potential-flow velocities to be integrated over the surface. The ratio between
cD and Cf , and the additional contribution of the wake dissipation, have all been lumped into the C̄f factor,
by the requirement that the formula give the correct result for the flat plate. Additional refinements can be
made by splitting the integral between the laminar and turbulent portions as appropriate.

Sato [13] has shown that the profile drag predictions of formula (4.115) are reliable to within a few per-
cent for flows which do not have trailing edge separation. He has also introduced modifications for wall
roughness, and also for compressibility which gives good results up to weakly transonic flow.

4.13.3 Boundary layer calculation methods
The next most reliable method of profile drag prediction is to actually perform the boundary layer calcula-
tions to obtain the far-downstream P∞ or K∞. However, this can run into difficulties if a simple classical
boundary layer calculation is used, since the ue(s) distribution from a potential solution typically has a very
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steep adverse pressure gradient immediately ahead of the trailing edge stagnation point. Consequently the
classical boundary layer calculation will fail there due to the Goldstein separation singularity, as discussed
in Section 4.12.1. The fully-coupled viscous/inviscid XFOIL and MSES methods avoid these pitfalls by
allowing ue(s) to adjust in response to the viscous displacement, which removes the Goldstein singularity.

The boundary layer calculation can be stopped at the trailing edge, or continued into the wake if ue(s) is
known along the wake. This raises the practical problem of how to determine P∞ or θ∞ from θ(x̄) at the
last calculated point x̄, which may be either at the trailing edge or at the end of a wake of finite length. A
suitable method is to use the von Karman equation (4.28) which in the wake simplifies as follows.

1

θ

dθ

ds
= −(H + 2)

1

ue

due
ds

d(ln θ) = −(H + 2) d(lnue) (in wake) (4.116)

This can be approximately integrated from the last known location s= s̄ to far downstream s→∞ if we
assume an average value of Havg over this interval. Since H→1 far downstream in an incompressible wake,
a reasonable approximation is

Havg 	 H(s̄) + 1

2
(4.117)

so that equation (4.116) then explicitly gives θ∞ in terms of the known quantities at s̄.

ln θ(s)
∣∣∣∞
s̄

= − (Havg+2) lnue(s)
∣∣∣∞
s̄

θ∞ = θ(s̄)

(
ue(s̄)

V∞

)(Havg+2)

(4.118)

The relations are diagrammed in Figure 4.29. Equation (4.118) is known as the Squire-Young formula [34],
and was originally developed for cases where s̄ is at the trailing edge, so that the extrapolation is over the
entire wake. However, it can be used if s̄ is some distance downstream in the wake, and in fact it then
becomes more accurate because the H	Havg assumption then gets better.
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Figure 4.29: Extrapolation of last-calculated θ at s= s̄ to far-downstream value θ∞.

The Squire-Young formula is also useful in experiments, where it can be used to extrapolate a measured wake
momentum defect near the airfoil to downstream infinity, so that the actual profile drag can be determined
from the measurements. This is described in Section 10.4.2.
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4.14 Transition
The average skin friction chart in Figure 4.28 indicates that the transition location has considerable influ-
ence on the profile drag of an airfoil or body, and often affects maximum lift as well. For boundary layer
calculation purposes, the transition point is where a switch is made from a laminar to a turbulent calculation
method. It is therefore necessary to determine the transition point in terms of laminar boundary layer quan-
tities and other relevant parameters. Since transition prediction is a large field, only a few key results can be
given here. See Reed et al [35] for an overview.

4.14.1 Transition types
Transition is in most cases initiated by some sort of unsteady external freestream disturbances, or by surface
vibration which oscillates the entire flow. How the outside disturbances enter the boundary layer is known
as the receptivity problem (see Saric et al [36]). The subsequent mechanisms which make these initial
disturbances trigger transition can be grouped into three broad types, shown in Figure 4.30.

Laminar Flow
Turbulent Flow

TransitionLaminar Flow Instabilities

Natural Transition

Laminar Flow
Turbulent Flow

Transition   Surface
Imperfection

Forced Transition

Laminar Flow
Turbulent Flow

Transition

Bypass Transition

Freestream
Turbulence,
   Noise

Figure 4.30: Main types of transition.

1. Forced transition.
This is caused by a geometric feature on the surface, such as a panel edge, rivet line, or an intentionally-
placed “trip strip.” If the feature’s size is comparable to the height of the local boundary layer, as mea-
sured by the displacement thickness for example, then it is a strong receptivity site where the external
disturbances can enter the boundary layer. These are usually sufficiently strong to trigger transition to
turbulence a short distance downstream.

2. Natural transition.
This occurs on relatively smooth surfaces in quiet flow, when the external disturbances are extremely
weak and the resulting initial disturbances or oscillations in the boundary layer are very weak as well.
Examples are external flows in flight or in a quiet wind tunnel. The initial disturbances are ampli-
fied by natural flow instabilities and increase exponentially in amplitude downstream, and eventually
become strongly chaotic. The changeover to chaotic turbulent flow defines the transition location.
Transition of this type can be predicted by the so-called eN methods [37], [38]. One example of such
a method is summarized in the next section.

3. Bypass transition.
This occurs only in very noisy environments, where the disturbances in the outer inviscid flow are
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sufficiently strong to enter the boundary layer almost everywhere. Examples are flows found inside
turbomachinery. Chaotic turbulent flow in a boundary layer on a turbomachine blade airfoil will
begin where the local Reynolds number Reθ becomes sufficiently large to allow the turbulence to be
sustained. This minimum value is in the range Reθ ≥ 150 . . . 250, depending on the local shape
parameter H . The method of Abu-Ghannam and Shaw [39] has been popular for predicting bypass
transition, especially in turbomachinery flow applications.

4.14.2 TS-wave natural transition prediction
Many types of exponentially-growing instabilities can precipitate natural transition. The most common types
in 2D-like flows are called Tollmien-Schlichting (TS) waves, which are sinusoidally-oscillating pressure and
velocity perturbations within the boundary layer (see Schlichting [12] and Cebeci and Bradshaw [20]). The
TS wave perturbations initially have very small amplitudes near the leading edge, usually orders of magni-
tude smaller than ue. For unstable waves these amplitudes grow exponentially downstream to levels suffi-
cient to trigger transition, roughly a few percent of ue. The ratio of the local to initial TS wave amplitudes is
defined as eÑ , where the exponent Ñ (s) is the so-called “N-factor” which quantifies the instability growth.
In the “envelope eN” transition prediction method, the N-factor is computed by an accumulating integral
over the upstream surface, much like the P (s) and K(s) defects are accumulated as indicated in Figure 4.8.

local / initial TS wave amplitude ratio = exp
(
Ñ (s)

)
(4.119)

Ñ (s) =

∫ s

0

dÑ

ds′
ds′ (4.120)

where
dÑ

ds
=

{
0 , Reθ<Reθo (H) (stable)
1

θ
fTS(H) , Reθ>Reθo (H) (unstable)

(4.121)

The empirical functions fTS(H) and Reθo (H) which determine the Ñ (s) growth are shown in Figure 4.31.
Curve fits are provided by Drela [6]. Transition is assumed to occur at the s location where the Ñ (s) variable
reaches a specified critical value Ncrit, which is a measure of the ambient noise or disturbance level.

4.14.3 Influence of shape parameter
For self-similar (power-law) flows, the TS growth rate functions can be used to explicitly determine the Reθ
value at the transition location, and also the corresponding Rex value.(

ue θ

ν

)
tr

≡ Reθtr (H ,Ncrit) = Reθo (H) +
Ncrit

dÑ/dReθ (H)
(4.122)

(ue s
ν

)
tr

≡ Rextr (H ,Ncrit) =

(
Reθtr

δFS

θ

)2

(4.123)

Figure 4.32 shows this Rextr versus the H value of the self-similar flow, for two typical Ncrit values. Note
the dramatic sensitivity of the transition location on the shape parameter H . Between the Blasius and
incipient-separation flows, H=2.6 and 4.0, the transition distance is reduced by roughly a factor of 100.

The transition location also depends on the specified parameter Ncrit, which is a measure of the initial TS
wave amplitude, or in effect the ambient disturbance level together with some degree of receptivity. Since
the initial disturbances must be amplified by a factor of eNcrit to precipitate transition, a large Ncrit value
corresponds to a clean flow, and vice versa. Ncrit = 11 or 12 is a typical value in a very clean flow like
a sailplane in flight, Ncrit = 9 is appropriate for the flow in a very quiet wind tunnel, while Ncrit = 4
corresponds to a fairly turbulent environment such as in a noisy wind tunnel. Note that e9 	 8100 and
e12	163 000, so enormous amplifications are required for TS waves to trigger transition in clean flows.
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Figure 4.31: TS-wave growth rate fTS = θ dÑ/ds and threshold Reθo for start of growth, versus
shape parameter H .
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Figure 4.32: Transition Reynolds number versus shape parameter H for self-similar flows, as pre-
dicted by the envelope eN method for two Ncrit values. Transition Reynolds number for incipient-
separation flow (H=4.0) is about 100 times smaller than for Blasius flow (H=2.6).

Influence of freestream Reynolds number

It’s useful to examine the effect of freestream Reynolds number on the transition location as indicated
by relation (4.123). Laminar boundary layer theory indicates that the momentum thickness (or any other
integral thickness) scales as θ ∼ 1/

√
Re∞. For example, Thwaites method for a constant ue = V∞ gives

θ(s) =

√
0.45ν s

V∞
= 0.664 c

√
s/c

Re∞
(4.124)

where Re∞ ≡ V∞c

ν
(4.125)
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and c is a global reference length such as the chord. Therefore, the N-factor growth rate scales as
√
Re∞ via

the 1/θ factor which multiplies fTS in (4.121). In addition, the local momentum-thickness Reynolds number
in this case is

Reθ ≡ ueθ

ν
= 0.664

√
s/c

√
Re∞ (Blasius flow) (4.126)

which affects where the growth begins via the Reθo (H) threshold function. The effects are illustrated in
Figure 4.33 for two Blasius flows with different freestream Reynolds numbers. As Re∞ increases, Ñ (s)

starts growing sooner because the larger Reθ reaches Reθo (2.6) sooner, and also grows faster because of the
smaller θ(s). Both effects contribute to moving transition upstream with increasing Re∞.
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Figure 4.33: Envelope eN transition prediction for two flat-plate flows with the same constant
H = 2.6, but different freestream Reynolds number. Flow 1 starts growing earlier due to its larger
Reθ(s)∼

√
Re∞, and also has a faster growth rate due to its smaller θ(s)∼ 1/

√
Re∞. Both effects

move transition forward as Re∞ is increased.

4.14.4 Transitional separation bubbles
In a sufficiently clean flow and at a sufficiently low Reynolds number, natural transition will occur after
laminar separation takes place. Past transition, the now-turbulent separated shear layer is able to reattach,
forming a transitional separation bubble (also called a laminar separation bubble), originally investigated
by Tani [40] and Gaster [41]. An example of such a flow is shown in Figure 4.34, in which a separation
bubble is revealed by the pressure plateau over its laminar portion, followed by a rapid pressure rise over
the turbulent portion after transition. The plateau is a consequence of the nearly-still fluid inside the laminar
part of the bubble being unable to sustain any significant pressure gradients. In contrast, the strong turbulent
mixing in the turbulent portion can support the strong adverse pressure gradient.

Figure 4.35 diagrams the overall separation bubble flow, together with its associated edge velocity ue(s),
shape parameter H(s), and momentum defect P (s) distributions. The steep velocity decrease from ue1 to
ue2 over the turbulent portion results in an associated steep momentum defect increase from P1 to P2. Since
skin friction is largely negligible in a separation bubble, these changes are related by the wake form of the
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Figure 4.34: XFOIL [5] pressure distributions on Eppler 387 airfoil at Re = 100 000 reveal a
transitional separation bubble on the upper surface. Experimental data is from McGhee at al [42].

von Karman momentum equation (4.116).

P2 	 P1

(
ue1
ue2

)Havg

(4.127)

where Havg 	 1
2(Hmax+Hturb) is an average shape parameter over the velocity change interval. Large

Hmax values in the bubble will therefore increase Havg and increase the downstream defect P2.

The smallest-possible downstream defect, denoted by P ′
2 in Figure 4.35, is obtained when transition occurs

close to laminar separation so that the bubble does not form and Havg stays very low at its turbulent value.
The difference

ΔPbubble = P2 − P ′
2 (4.128)

can be considered to be “bubble drag,” or the drag penalty of the bubble being present.

The excess ΔPbubble from large Hmax values persists into the far wake and implies a corresponding increase
in the overall profile drag D′, referred to as bubble drag. This is the mechanism responsible for the inordinate
drag increases experienced by most airfoils which are operated well below their intended Reynolds numbers,
which results in strong separation bubble formation.

Reducing separation bubble loss ΔPbubble is one of the major design goals for airfoils at low Reynolds
numbers, below 250 000 or so. A specific objective is to make Hmax as small as possible and also ue1/ue2
as close to unity as possible, while still maintaining the transition point at the ideal location. This is achieved
via a suitable transition ramp, which is a region of weak adverse pressure gradient in the inviscid velocity
ueINV

(s) ahead and over the bubble, which encourages instabilities but is too weak to produce early laminar
separation. Once separation does occur, the weak inviscid adverse pressure gradient also gives a modest
H(s) growth in the bubble, so Hmax at transition is modest as well. Furthermore, the longer weak adverse
gradient reduces the velocity ue1 at transition, so that the velocity ratio ue1/ue2 is smaller as well. Both
effects are seen to decrease the downstream defect P2 in equation (4.127).

Figure 4.36 shows the SD7037 airfoil with features a transition ramp starting at 5% chord. The result is
a 32% drag reduction compared to the Eppler 387 airfoil in Figure 4.34 which has a shorter and steeper
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Figure 4.35: Transitional separation bubble is produced when laminar separation is followed by
transition and subsequent reattachment. The excess momentum defect increase ΔPbubble due to a
large Hmax is a bubble drag penalty.

transition ramp starting at 35% chord. The relevant boundary layer parameter distributions for the two
airfoils are compared in Figure 4.37. The Hmax value is seen to be smaller for the SD7037. Comparing the
Cp(x) distributions between Figures 4.34 and 4.36 reveals that the SD7037 has a noticeably smaller Cp jump
between transition and reattachment, so its ue1/ue2 ratio is smaller as well.

Figure 4.36: XFOIL [5] pressure distributions on SD7037 airfoil at Re = 100 000, which features a
long transition ramp (weak adverse pressure gradient) starting at x/c 	 0.05 to reduce bubble loss.
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A long bubble ramp requires a reduction in the overall airfoil thickness, which influences the structural merit
(maximum spar thickness) and other properties such as cm and off-design performance, making the overall
airfoil design problem quite complex. These various design considerations are discussed in more detail in
the low Reynolds number airfoil design studies by Drela [43], Liebeck [44], and Selig [45]. Control of
separation bubbles using intentional boundary layer trips is discussed by Gopalarathnam et al [46].
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Chapter 5

Aerodynamic Force Analysis
This chapter will examine aerodynamic forces acting on a body, and how they are related to the properties of
the flow-field. A major goal is to rigorously relate the lift, drag, and sideforce components to the flow-field
on a closed bounding surface which is either on the body surface itself (near-field force), or arbitrarily far
from the body (far-field force).

Another major goal is to simplify the far-field forces using suitable simplifications and idealizations of
the flow-field, in particular the trailing vortex wake. This will produce expressions for the lift, drag, and
sideforce which involve the trailing vortex wake alone. It will also allow the decomposition of the drag
force into profile-drag and induced-drag constituents, and thus enable the optimization of aerodynamic
configurations for minimum induced drag.

5.1 Near-Field Forces

5.1.1 Force definitions
The near-field aerodynamic force F on a body is the total force that the fluid exerts on its surface Sbody, as
shown in Figure 5.1. This can be decomposed into pressure normal forces and viscous stress forces,

F = Fpressure + Ffriction (5.1)

Fpressure ≡ ©
∫∫

−pw n̂ dS = ©
∫∫

(p∞−pw) n̂ dS (5.2)

Ffriction ≡ ©
∫∫

τw dS , τw ≡ ¯̄τw · n̂ (5.3)

where pw, τw are the pressure and viscous stress vector acting on area element dS , with unit normal n̂.
Replacing −pw with p∞−pw in the second pressure integral is allowed because the uniform pressure p∞

does not exert a net force on a body. This follows from the identity ◦
∫∫

n̂ dS = 0, valid for any volume.

Choosing the x-axis to be aligned with the freestream, V∞=V∞ x̂, the streamwise drag force component is
then D = F · x̂, which has pressure and friction contributions, as shown in Figure 5.1.

D = F · x̂ = Dpressure + Dfriction (5.4)

Dpressure ≡ ©
∫∫

(p∞−pw) n̂ · x̂ dS (5.5)

Dfriction ≡ ©
∫∫

τw · x̂ dS (5.6)
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Figure 5.1: Surface pressure and viscous stress forces resolved into drag and lift components. Third
dimension y and sideforce Y are not shown. The viscous stress contribution to lift and sideforce is
typically negligible.

The transverse-horizontal and transverse-vertical components are the sideforce Y and the lift L.

Y = F · ŷ 	 ©
∫∫

(p∞−pw) n̂ · ŷ dS (5.7)

L = F · ẑ 	 ©
∫∫

(p∞−pw) n̂ · ẑ dS (5.8)

The viscous stress contributions to Y,L will be neglected in the subsequent discussion, since at high
Reynolds numbers they are typically negligible compared to the pressure contributions.

5.1.2 Near-field force calculation
In grid-based CFD solutions of the Navier-Stokes equations, the D,Y,L force components are calculated
directly from the above definitions via numerical integration over the surface. But in simplified flow models,
such as inviscid panel methods with or without viscous displacement models, this approach works only for
the transverse Y,L components. If the streamwise D component were computed in this manner, it would
be simply incorrect or very inaccurate. The main reason is that the Dpressure integral has relatively large
positive and negative integrand contributions over the surface which mostly cancel, as shown in Figure 5.2.
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+

+
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p n− . xp( )w
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Dpressure

pressure p n− .p( )w zSigns of local Signs of local

x
zV V

D Ldd

Figure 5.2: Streamwise components of the surface pressure forces on a streamlined shape almost
entirely cancel, with the small net residual being the pressure drag. There is no such cancellation of
the transverse components which form the much larger lift.

In fact, for 2D inviscid flow the cancellation is theoretically perfect, which constitutes d’Alembert’s paradox.

D = Dpressure = 0 (2D inviscid flow) (5.9)
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For 3D inviscid lifting flows the cancellation is not total, but is still extensive so that the pressure drag force
is small. Even small errors in the surface pressures, or in the discrete integration method, then become very
large when compared against the small (but crucial) remaining pressure drag.

The pressure-drag calculation difficulties remain for viscous flow simulations which employ the displace-
ment effect. Such methods were discussed in Chapters 3 and 4, and two computed examples are shown in
Figures 3.6 and 3.7. The modification of pw by the viscous displacement has the following effects:

• The modified lift L is now much more accurate than what’s predicted by the simple inviscid model.
In particular, it can capture the effects of flow separation and stall as was shown in Figure 3.5.

• The modified Dpressure is now correctly nonzero in 2D flow. However, its accuracy is still relatively
poor due to the streamwise-component pressure force cancellation shown in Figure 5.2. One reason is
that errors associated with numerical integration over the discretized surface are still present. This is
most severe for simple panel methods with relatively coarse paneling. Another reason is that even with
the displacement effect corrections, the computed wall pressures pw still have residual errors. These
may be small relative to lift, but are very significant relative to the much smaller pressure drag. These
errors in pw are caused by the neglect of streamwise flow curvature in the viscous displacement-effect
models, and are not easily removed.

5.2 Far-Field Forces

Consider the indented control volume shown in Figure 5.3, which has the body outside of it topologically.
Since the volume is empty, the integral momentum equation (1.28) can be applied to it. Assuming steady
flow, and eliminating the gravity force ρf by re-defining p to exclude the hydrostatic pressure, we have

©
∫∫ [

ρ(V· n̂)V + pn̂ − ¯̄τ · n̂
]
dS = 0 (5.10)

where the contour integral can be broken up into three Sbody, Souter, and Scut pieces indicated in Figure 5.3.

©
∫∫ [ ]

dS = ©
∫∫

body

[ ]
dS + ©

∫∫
outer

[ ]
dS +

∫∫
cut

[ ]
dS = 0

Since the two parts of Scut have equal and opposite n̂ vectors its contribution vanishes.∫∫
cut

[ ]
dS = 0 (5.11)

Furthermore, Sbody is defined to lie on the body’s solid surface where V· n̂ = 0, so that the Sbody integral
upon comparison with (5.1)–(5.3) is seen to be the body force F.

©
∫∫

body

[
ρ(V· n̂)V + pn̂ − ¯̄τ · n̂

]
dS = ©

∫∫
body

[
pwn̂ − τw

]
dS = F (5.12)

The integrand above differs in sign from (5.1)–(5.3) because here n̂ is in the opposite direction, as can be
seen by comparing Figures 5.1 and 5.3.

Combining (5.11) and (5.12) with (5.10) then gives an expression for the body force which involves only
the Souter contour. This is known as the Integral momentum theorem.

F = ©
∫∫

outer

[
(p∞−p) n̂ − ρ(V· n̂)(V−V∞)

]
dS (5.13)
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Figure 5.3: Body force F is related to quantities on any contour Souter enclosing the body. Third
dimension y and sideforce Y are not shown.

The viscous stress ¯̄τ · n̂ was assumed to be negligible on Souter and has been left out of (5.13), although it
could be retained if appropriate. As before, −p was replaced with p∞−p in (5.13) with no effect. Also, V
was replaced with V−V∞ which is allowed because of the mass conservation integral for the volume.

©
∫∫

outer
ρ(V· n̂) dS = 0 (5.14)

The integral (5.13) gives an alternative way to calculate the force F on the body, using flow quantities on any
surface Souter surrounding the body. Although it’s called the “far-field force.” the integral is valid for any
distance of the Souter contour, provided only that ¯̄τ · n̂ on it is negligible as assumed. A distant placement
is required only if far-field models are used to estimate the p and V needed to evaluate the integral.

5.3 Flow-Field Idealization
The objective now will be to simplify the lift, drag, and sideforce components of the far-field force expres-
sion (5.13) into forms which involve only the wake trailing from the lifting body. This will provide physical
insight into the links between forces and flow-field properties, and will also result in practical calculation
methods for the forces which will enhance aerodynamic configuration design and optimization procedures.

Consider the rather complicated but typical vortex wake shed by an aerodynamic body, sketched in Fig-
ure 5.4. The following simplifications and idealizations of the wake vortex sheet will be made:

• The wake vortex sheet is assumed to trail straight back from the trailing edge where it is shed, along the
freestream direction (i.e. along the x-axis). The yz cross-sectional shapes of the sheet will therefore
be the yz-shape of the wing trailing edge. In effect this neglects the roll-up of the vortex sheet
which typically begins at the sheet edges and eventually involves the entire sheet. The straight-wake
assumption will be modified slightly in Section 5.9 where a fuselage affects the wake trajectory.

• Only the streamwise vorticity ωx is assumed to have a nonzero lumped vortex sheet strength γ. This
will be used to construct the perturbation velocity field ∇ϕ outside of the sheet, which is associated
with the lift, sideforce, and induced drag. The transverse vorticity ωs is associated with the viscous
velocity defect within the sheet which determines the remaining profile drag component.

5.4 Wake Potential Jump
The idealized far-field force components will be seen to depend on the potential jump Δϕ(s) across the ideal-
ized wake sheet in the far-downstream Trefftz plane. The objective here is to relate Δϕ(s) to the aerodynamic
parameters of the lifting body which generated the sheet.
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Figure 5.4: A body with lift, drag and sideforce, trailing a thin sheet of vorticity with components
ωx, ωs. It will be assumed that the sheet trails straight back, and the equivalent lumped vortex sheet
strength γ is in the streamwise direction. In effect this neglects the vortex sheet roll-up.

A thin wake layer must have a zero static pressure jump Δp ≡ pl− pu across it. Assuming the total pressure
is the same on the upper and lower sides of the wake vortex sheet, the compressible or incompressible steady
Bernoulli equation then implies a zero jump in the velocity magnitude. We then have,

Δp = 0 → Vu ·Vu − Vl ·Vl = 0
1
2 (Vu+Vl) · (Vu−Vl) = 0

Va · ΔV = 0

Va · ∇̃(Δϕ) = 0 (5.15)

Va ≡ 1
2 (Vu+Vl)

ΔV ≡ Vu−Vl

where Va denotes the average sheet velocity, shown in Figure 5.5. In the final relation (5.15), the velocity
jump ΔV was replaced by the equivalent surface gradient of the potential jump Δϕ.

Equation (5.15) states that the gradient of the sheet potential jump Δϕ(s,�) is perpendicular to Va, or equiv-
alently that Δϕ(s,�) is constant along the average sheet streamlines which are everywhere parallel to Va, as
shown in Figure 5.5. Hence, the ΔϕTE value at the body’s trailing edge where the sheet is shed persists
downstream along the average streamline into the Trefftz plane. This ΔϕTE is also the circulation Γ̃ about a
contour around the wing or body section which contains that trailing edge point.

In principle one could trace the average wake streamlines from the wing trailing edge to determine its shape
y(s), z(s) and loading Δϕ(s) in the far-downstream Trefftz plane. This would require tracking the roll-up
process in detail which for most cases is impractical. A more common and much simpler approach is to
trace the wake streamlines straight back along the freestream direction. This is equivalent to assuming

Va 	 V∞ (straight-wake assumption) (5.16)

which is the model shown in Figures 5.6 and 5.7 in the following sections.
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Figure 5.5: Wake sheet potential jump Δϕ is constant along average streamlines which are parallel
to average sheet velocity Va. This defines Δϕ(s) in the Trefftz plane from the body’s circulations Γ.

5.5 Lifting-Line Analysis

A practical approach to lift and drag calculation for high aspect ratio 3D wings is based on the lifting line
approximation. This is actually a hybrid far-field/near-field model which uses the idealized straight-wake
approximation together with specified spanwise wing chord and twist distributions c(y) and αaero(y). The
lifting-line model hinges on the following assumptions, illustrated in Figure 5.6.

• The near-field flow is 2D, but with an effective freestream velocity Veff . This is the freestream plus
the velocity of wake, so that it contains all contributions except those of the vortices and sources
representing the local 2D wing section. These are intentionally not shown in Figure 5.6, since they do
not contribute to Veff . The wake vorticity lies mostly along the freestream, so its downwash velocity
wwake at the wing is in the vertical ẑ direction, and therefore acts primarily to tilt the freestream by
the induced angle αi.

Veff = V∞ x̂ + wwake ẑ (5.17)

αi = arctan
−wwake

V∞
	 −wwake

V∞
(5.18)

For a positive (upward) lift, the downwash is typically negative and hence αi is positive.

• At each spanwise location, wwake is assumed to be nearly uniform over the chordwise extent of the
wing’s airfoil, so that αi acts to modify the airfoil’s angle of attack at that location.

• At each spanwise location y, wwake(y) is related to the wake vortex sheet strength γ at all spanwise
locations y′ by considering the wake to be a row of semi-infinite vortex filaments of strength γ(y′)dy′.
The vertical velocity at y, of a filament at y′, is then dwwake = γ dy′/4π(y−y′). Integrating this over
the span y = −b/2 . . . b/2 gives the overall local downwash.

∂ϕ

∂z
(0,y,0) ≡ wwake(y) =

1

4π

∫ b/2

−b/2

γ(y′)

y−y′
dy′ (5.19)

The physical lifting-line model described here does not require that the wing be unswept. However, classical
wing analysis methods based on the lifting-line model, like the one given in Appendix E, do assume zero
sweep. For simplicity, the rest of this section will also assume zero sweep.
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Figure 5.6: Vortex wake with vertical “downwash” velocity wwake (defined positive up, but is typi-
cally negative for a positive lift). Lifting-line approximation assumes wwake is nearly constant over
extent of the airfoil’s 2D near-field, producing a modified effective local freestream Veff at each
spanwise location y which is rotated from V∞ by the induced angle αi.

A very attractive feature of the lifting-line approximation is its ability to exploit known airfoil characteristics.
Because the near-field flow is effectively 2D, its lift/span and drag/span are described by the usual 2D airfoil
coefficients c�, cd corresponding to the wing-section airfoil shape at that location.

L′
(y) = 1

2ρ∞V 2
∞ c c�(αeff ) (5.20)

D′
(y) = 1

2ρ∞V 2
∞ c cd(αeff ) (5.21)

αeff (y) = α+ αaero − αi (5.22)

Here αeff is the effective local angle of attack, which is less than the overall aerodynamic angle α+αaero(y)

because of the induced angle αi(y). The induced angle also rotates the local lift and drag forces L′,D′ as
indicated in Figure 5.6. Projecting L′,D′ onto the global freestream-aligned z, x axes and integrating over
the span gives the overall lift and drag L,D.

L =

∫ (
L′ cosαi − D′ sinαi

)
dy 	

∫
L′ dy (5.23)

D =

∫ (
D′ cosαi + L′ sinαi

)
dy 	 Dp + Di (5.24)

Dp =

∫
D′ dy , Di =

∫
L′ αi dy (5.25)

The rightmost (approximate) forms of the L,D expressions assume

αi � 1 , cd � c�

which is valid for high aspect ratio wings with unstalled airfoils.
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Although the above lifting-line analysis has defined the overall wing lift and the wing drag components in
terms of the relevant quantities, it is not fully predictive as given. Actual calculation of the forces would
require knowledge of the vortex sheet strength distribution γ(y) as a starting point. This is determined from
the wing geometry using the classical procedures given in Appendix E.

The lifting-line force analysis summarized by equations (5.23) and (5.24) is seen to naturally produce a
breakdown of the total drag D into profile drag and induced drag components Dp and Di, and gives them
in terms of the sectional D′, L′ forces and the induced angle αi by relations (5.25). The main limitation
of this analysis is that it assumes a high aspect ratio wing. For low aspect ratio wings, or more general
lifting body shapes like the one shown in Figure 5.4, the vertical velocity wwake of the vortex wake cannot
be assumed to be uniform across the chord. In this case a locally-constant induced angle αi and hence a
local effective angle of attack αeff (y) cannot be defined, so that the lift and drag coefficient c� and cd in
(5.20) and (5.21) cannot be uniquely determined. Furthermore, with low aspect ratios the locally-2D flow
assumption becomes invalid, so that the 2D coefficients c� and cd would become questionable even if some
suitable chord-averaged αeff could be assumed. The overall consequence is that lift and drag expressions
(5.23), (5.24) become inapplicable for general body geometries. These limitations will be avoided with the
more general far-field force analyses considered in the subsequent sections.

5.6 Idealized Far-Field Drag

The exact far-field drag is defined as the streamwise component of the total far-field force (5.13).

D = F · x̂ = ©
∫∫

outer

[
(p∞−p) n̂ · x̂ − ρ(V· n̂)(u−V∞)

]
dS (5.26)

Appendix C evaluates the 2D form of this relation by integrating around a circular contour far from the
airfoil, using potential 2D far-field approximations for p and V, with a special treatment of the viscous
wake velocity defect. For a lifting 3D body, the integrand in (5.26) is negligible everywhere except in the
downstream Trefftz-plane part of Souter, where the trailing wake exits. Hence, for 3D cases the drag integral
above can be conveniently restricted to only this yz Trefftz plane, which has n̂ = x̂.

D =

∫∫
TP

[ p∞−p − ρu(u−V∞) ] dy dz (5.27)

We will now decompose the effectively-exact far-field drag expression (5.27) into profile and induced com-
ponents. This requires an idealization of the flow in the Trefftz plane, as sketched in Figure 5.7. Specifically,
the vortex sheet thickness is assumed to be small compared to its span, and its net strength γ(s) is assumed
to be in the x direction. The wake roll-up will also be neglected to simplify the sheet’s yz shape. The roll-up
issue in drag calculations is discussed in more detail by Kroo [47].

As shown in Figure 5.7, the total velocity at the Trefftz plane is broken down into the freestream V∞x̂, a
potential perturbation velocity ∇ϕ associated with the streamwise vorticity γ(s), and a streamwise viscous
defect Δu associated with the transverse vorticity (shown in Figure 5.4) inside the viscous wake.

V = (V∞ +Δu)x̂ + ∇ϕ (5.28)

The pressure is related to the potential part of the velocity (excludes Δu) by the incompressible Bernoulli
equation (1.109). This is valid since Trefftz-plane velocities are typically low even for high-speed vehicles.

p = p∞ + 1
2ρ∞V 2

∞ − 1
2ρ∞ |V∞x̂+∇ϕ|2

= p∞ − ρ∞V∞ ϕx − 1
2ρ∞

(
ϕ2
x + ϕ2

y + ϕ2
z

)
(5.29)
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Figure 5.7: Flow in Trefftz plane behind a lifting 3D object, idealized from the actual flow shown
in Figure 5.4. Trailing vortex sheet of strength γ(s) generates crossflow perturbation velocity ∇ϕ
which defines induced drag, and far-field lift and sideforce. Viscous axial velocity defect Δu(s,n)
within wake sheet defines profile drag.

Substituting the velocity (5.28) and pressure (5.29) expressions into the drag integral (5.27) and simplifying
the result produces a natural decomposition of the drag into its induced-drag and profile-drag components.

D = Di + Dp (5.30)

Di ≡
∫∫

1
2ρ∞

(
ϕ2
y + ϕ2

z − ϕ2
x

)
dS 	

∫∫
1
2ρ∞

(
ϕ2
y + ϕ2

z

)
dS (5.31)

Dp ≡
∫∫

ρ (V∞ + 2ϕx +Δu) (−Δu) dS 	
∫∫

ρ (V∞ +Δu) (−Δu) dS (5.32)

The approximations reasonably assume that the perturbation velocity ∇ϕ is mostly parallel to the yz Trefftz
plane, as indicated by Figure 5.7. Specifically, the following assumptions are made.

ϕ2
x � ϕ2

y + ϕ2
z

ϕx � V∞ +Δu
(5.33)

The induced drag expression (5.31) is seen to be the crossflow kinetic energy (per unit distance) deposited
by the body. This energy is provided by part of the body’s propelling force working against the induced
drag. The remaining part works against the profile drag, considered next.

5.6.1 Profile drag relations
The profile drag (5.32) can be rewritten as

Dp =

∫∫
ρu (V∞ − u) dS (5.34)
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which has the same integrand as the 2D momentum defect P defined by (4.9), with ue = V∞ in the down-
stream wake. Assuming the wake sheet is thin compared to its spanwise extent, the area element can be
expressed in the sheet coordinates as dS = dn ds, and the profile drag is then the spanwise integral of the
wake’s momentum defect along the whole transverse length of the wake sheet.

Dp =

∫ smax

0
P ds (5.35)

P (s) =

∫
ρu (V∞−u) dn =

(
ρu2eθ

)
wake

= ρ∞V 2
∞ θ∞(s) (5.36)

5.6.2 Trefftz-plane velocities

As stated earlier, the perturbation potential velocity ∇ϕ is associated with the wake vortex sheet strength
γ = γ x̂. Based on the equivalence between vortex and doublet sheets presented in Section 2.5, this γ(s) is
related to the sheet’s potential jump Δϕ(s) as follows.

γ(s) = n̂× ∇̃(Δϕ) = −d(Δϕ)

ds
x̂

γ(s) = γ · x̂ = −d(Δϕ)

ds
(5.37)

Referring to Figure 5.8, this vortex sheet defines the 2D perturbation velocity field ∇ϕ in the Trefftz plane,
via the usual 2D superposition integral,

∇ϕ(r) =
1

2π

∫ smax

0
γ(s)

x̂× (r−r′)

| r−r′|2 ds , r = y ŷ+ z ẑ (5.38)

where r is the yz field point, and r′(s) = y′(s) ŷ + z′(s) ẑ parametrically defines the shape of the sheet.
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Figure 5.8: Vortex sheet in Trefftz plane, with associated perturbation velocity field ∇ϕ, which has
normal velocity component ∂ϕ/∂n on the sheet itself.

For the particular field point locations on the sheet itself, we can also define the normal component of this
velocity.

∂ϕ

∂n
= ∇ϕ · n̂ (5.39)

One of the two velocities (or their average) on either side of the sheet can be used here, since they have the
same normal component, which is continuous across any vortex sheet.
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Many applications consider the simpler situation of a flat wing of span b, where the vortex sheet is also flat
and lies on the y axis from −b/2 to b/2. The above relations then simplify as follows.

γ(y) = −d(Δϕ)

dy
(5.40)

∂ϕ

∂n
=

∂ϕ

∂z
=

1

2π

∫ b/2

−b/2

γ(y′)

y−y′
dy′ (flat wake) (5.41)

The potential field ϕ(y,z) for this flat-wake case, with an elliptic potential jump Δϕ =
√

1− (2y/b)2, is
shown in Figure 5.9. The corresponding streamfunction shows the crossflow streamlines.

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2y -1.5
-1

-0.5
 0

 0.5
 1

 1.5

z

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6

ϕ

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2y -1.5
-1

-0.5
 0

 0.5
 1

 1.5

z

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6

ψ

Figure 5.9: Trefftz-plane potential ϕ(y,z) for an elliptic potential jump on a flat wake. The isolines
of the corresponding streamfunction ψ(y,z) show the actual crossflow streamlines, also sketched in
Figure 5.7.

5.6.3 Induced drag relations
The induced drag definition (5.31) is awkward or impractical to evaluate as written because of the infinite
double integral. It can be simplified considerably by using the identity

∇f · ∇f = ∇ · (f ∇f) − f ∇2f (5.42)

which is valid for any differentiable function f . Choosing f=ϕ, which satisfies the continuity requirement
∇2ϕ = 0, simplifies the identity to the following form.

∇ϕ · ∇ϕ = ∇ · (ϕ∇ϕ) (5.43)

Referring to Figure 5.10, the induced drag integral (5.31) then becomes

Di =

∫∫
1

2
ρ∞ ∇ϕ · ∇ϕ dS

=

∫∫
1

2
ρ∞ ∇ · (ϕ∇ϕ) dS

=

∮
1

2
ρ∞ ϕ∇ϕ · n̂ dl (5.44)

where the last step (5.44) was obtained via the Gauss Theorem. This integral is over the outer contour with
arc length l, and its unit normal vector n̂ points out of the domain.

The outer contour must have ϕ continuous inside, otherwise Gauss’s Theorem or identity (5.43) would not be
valid. This requires placing the vortex sheet (and its Δϕ jump) topologically outside the contour, as shown in
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Figure 5.10: Induced drag line integral over l on entire contour perimeter is reduced to only a single
integral over s on the vortex wake sheet.

Figure 5.10. For the three contour pieces Swake, Scut, Souter, the contribution of Souter to integral (5.44) will
vanish when it’s taken out to infinity, and the contribution of piece Scut is always zero by antisymmetry of
its two n̂ vectors. For the only remaining piece Swake wrapped around the wake vortex sheet, the following
relations hold for the two opposing points 1,2:

n̂1(l) = −n̂2(l) = n̂(s) (5.45)

dl = ds (5.46)

The Swake surface integral around the wake can now be replaced by an integral along the wake, and further
simplified using the potential jump definition Δϕ = ϕ2 − ϕ1.

Di =
1

2
ρ∞

∮
wake

ϕ∇ϕ · n̂ dl

=
1

2
ρ∞

∫
[ ϕ1∇ϕ1 · n̂1 + ϕ2∇ϕ2 · n̂2 ] ds

=
1

2
ρ∞

∫
[ ϕ1∇ϕ1 · n̂ − ϕ2∇ϕ2 · n̂ ] ds

Di = −1

2
ρ∞

∫ smax

0
Δϕ

∂ϕ

∂n
ds (5.47)

For the common case of a flat wake of span b, relation (5.47) can be alternatively given as follows.

Di = −1

2
ρ∞

∫ b/2

−b/2
Δϕ

∂ϕ

∂z
dy (flat wake) (5.48)

The profile drag expression (5.34) or (5.36) based on the momentum defect, together with the induced drag
expression (5.47) based on the crossflow kinetic energy, provide a relatively simple and quite accurate means
of calculating or estimating the overall drag of a general 3D configuration.

The required input for the profile drag expression is the spanwise momentum defect distribution P (s). The
input for the induced drag expression is the wake sheet potential jump distribution Δϕ(s). Both of these
can be obtained with a suitable combination of inviscid and boundary layer calculation methods, preferably
coupled via one of the displacement-effect models. The overall far-field drag is relatively accurate, since
it does not suffer from pressure drag cancellation errors which make near-field pressure drag calculation
unreliable.
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The first righthand side term in the identity (5.57) vanished inside the contour integrals via Gauss’s Theorem
and the div(curl) = 0 identity.

©
∫∫

[∇×(av)] · n̂ dS =

∫∫∫
∇ · [∇×(av)] dV =

∫∫∫
0 dV = 0

For the final step in simplifying the sideforce and lift expressions (5.58), (5.59) we note that their integrands
are nonzero only on the Trefftz plane where the trailing vorticity ω exits the control volume. Here we have
n̂= x̂, so that ω · n̂ = ωx where the scalar ωx is the streamwise vorticity component along x. As in the
drag derivations, we now also make the assumption that the viscous wake is thin, so that the area element
can be recast using the sheet’s coordinates, dS = dn ds, which permits lumping of the vorticity ωx into the
equivalent vortex sheet strength γ =

∫
ωx dn.

Y = ρ∞V∞

∫∫
TP

−z ωx dn ds = ρ∞V∞

∫ smax

0
−z γ ds (5.60)

L = ρ∞V∞

∫∫
TP

y ωx dn ds = ρ∞V∞

∫ smax

0
y γ ds (5.61)

Next, using relation (5.37), the vortex sheet strength is replaced by the potential-jump derivative, and the
resulting expressions are integrated by parts.

Y = ρ∞V∞

∫ smax

0
z
d(Δϕ)

ds
ds = ρ∞V∞ z Δϕ

∣∣∣smax

0
− ρ∞V∞

∫ smax

0
Δϕ

dz

ds
ds (5.62)

L = ρ∞V∞

∫ smax

0
−y

d(Δϕ)

ds
ds = −ρ∞V∞ y Δϕ

∣∣∣smax

0
+ ρ∞V∞

∫ smax

0
Δϕ

dy

ds
ds (5.63)

Since the potential jump is zero at each end of the sheet, the first term in (5.62) and (5.63) disappears. The
final expressions for the far-field sideforce and lift are then simple integrals of the potential jump or jumps
over the −z and y projections of the vortex sheet, as shown in Figure 5.11.

Y = ρ∞V∞

∫ zmax

zmin

−Δϕ dz (5.64)

L = ρ∞V∞

∫ ymax

ymin

Δϕ dy (5.65)

For this reason, the wake potential jump Δϕ is frequently called “the loading,” since the quantity ρ∞V∞Δϕ
is in effect the load/span acting on the body which is shedding the wake, and acts normal to the wake.

5.8 Trefftz Plane Integral Evaluation

5.8.1 Fourier series method for flat wake
The mathematical technique used in the lifting-line wing analysis described in Appendix E also provides
a convenient means of computing lift and induced drag for the flat-wake case if we make the substitution
Γ → Δϕ. The potential jump is first expanded as a Fourier sine series in the angle coordinate ϑ.

s(ϑ) = y(ϑ) =
b

2
cos ϑ , dy = − b

2
sinϑ dϑ (5.66)

Δϕ(ϑ) = Δϕ(y(ϑ)) = 2bV∞

∞∑
n=1

An sin(nϑ) (5.67)
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Figure 5.11: Far-field lift and sideforce are areas under projected Δϕ(y) and −Δϕ(z) distributions.

If Δϕ(y) is known, then its coefficients An can be obtained by Fourier analysis of the above expansion.

An =
1

πbV∞

∫ π

0
Δϕ(ϑ) sin(nϑ) dϑ (5.68)

The Trefftz-plane lift integral (5.65) is seen to be the same as the lifting-line result (E.19), and depends only
on the first coefficient A1.

L = ρ∞V∞

∫ b/2

−b/2
Δϕ dy =

1

2
ρ∞V 2

∞ b2 πA1 (5.69)

The flat-wake normal velocity ∂ϕ/∂z defined by (5.41) is seen to be twice the lifting-line downwash wwake

definition (E.2). This is evaluated in terms of the Fourier coefficients by result (E.10).

∂ϕ

∂z
(y) =

1

2π

∫ b/2

−b/2

dΔϕ

dy′
dy′

y′−y
= −2V∞

∞∑
n=1

nAn
sin(nϑ)

sinϑ
(5.70)

The flat-wake induced drag integral (5.48) can now be expressed in terms of the Fourier coefficients, by the
lifting-line result (E.20).

Di = πb2
1

2
ρ∞V 2

∞

∞∑
n=1

nA2
n =

(L/b)2

1
2ρ∞V 2

∞ π
(1+δ) =

(L/b)2

1
2ρ∞V 2

∞ π e
(5.71)

δ ≡ 2

(
A2

A1

)2

+ 3

(
A3

A1

)2

+ . . . =

∞∑
n=2

n

(
An

A1

)2

(5.72)

The factor 1+δ in (5.71) is sometimes replaced by the inverse of the span efficiency, 1/e.

By choosing some suitable reference area Sref , with corresponding aspect ratio AR ≡ b2/Sref , the above lift
and induced drag can be put into convenient dimensionless forms.

CL ≡ L
1
2ρ∞V 2

∞ Sref

= A1 πAR (5.73)

CDi ≡ Di
1
2ρ∞V 2

∞ Sref
=

π

AR

∞∑
n=1

nA2
n =

C2
L

π ARe
(5.74)
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For a given specified lift and span, the above results show that the minimum induced drag is obtained if
δ=0, or e=1, or equivalently A2=A3 . . . = 0, and the potential jump has an elliptical distribution on the
wake. For this case the normal velocity is also constant everywhere across the wake.

Δϕ(y) = 2bV∞A1 sinϑ = 2bV∞
CL

π AR

√
1− (2y/b)2 (5.75)

∂ϕ

∂n
(y) = −2V∞A1 = −2V∞

CL

π AR
(5.76)

5.8.2 Discrete panel method for a general wake
For a general wake shape, the force integrals must be evaluated using numerical integration. A relatively sim-
ple method is to discretize the wake into i = 1 . . . N panels as shown in Figure 5.12, with each panel i hav-
ing a length Δsi, and a piecewise-constant potential jump Δϕi, The sideforce and lift integrals (5.64),(5.65)
then become sums over all the panels. The convenient panel inclination angle θi is also introduced, so that
Δyi = cos θi Δsi and Δzi = sin θi Δsi.

Y =

N∑
i=1

−Δϕi sin θi Δsi (5.77)

L =
N∑
i=1

Δϕi cos θi Δsi (5.78)

y

z
ni

Δ
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ϕΔ

Δsi

ϕΔ i
iΓ −1/2

iΓ +1/2

ϕΔ i −1

iΓ −1/2
iΓ +1/2

1 i N... ...

θi

Figure 5.12: Wake paneling for evaluation of Trefftz-plane forces.

To evaluate the induced drag integral (5.47) it is necessary to first determine the normal velocity ∇ϕi · n̂i at
each panel midpoint. This is the velocity of all the trailing vortices resulting from the discrete steps in the
potential jump. Referring to Figure 5.12, each trailing vortex strength is

Γi−1/2 = Δϕi−1 − Δϕi (5.79)

defined positive about the x axis, or counterclockwise in the yz plane. The velocity at each panel midpoint
is then the discrete counterpart of the 2D velocity superposition (5.38).

∇ϕi =
1

2π

N+1∑
j=1

Γj−1/2

x̂× (ri−rj−1/2)

| ri−rj−1/2|2
=

1

2π

N+1∑
j=1

Γj−1/2

−(zi−zj−1/2)ŷ + (yi−yj−1/2)ẑ

(yi−yj−1/2)2 + (zi−zj−1/2)2
(5.80)

Its normal component can then be condensed into a convenient Aerodynamic Influence Coefficient (AIC)
matrix Aij which depends only on the wake geometry,

∇ϕi · n̂i ≡ ∂ϕ

∂ni
=

N∑
j=1

Aij Δϕj (5.81)
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and allows calculation of ∂ϕ/∂ni for any panel Δϕi distribution by the simple summation. The induced
drag integral (5.47) is then approximated by a second sum over the panels.

Di = −1

2
ρ∞

N∑
i=1

Δϕi
∂ϕ

∂ni
Δsi (5.82)

5.9 Fuselage wake contraction effect

For a configuration with a fuselage of significant size, such as the one shown in Figure 5.5, the average sheet
velocity Va can no longer be assumed to be parallel to the freestream, so the wake does not trail straight back
from the wing trailing edge. The actual velocities and streamline trajectories can be determined from a panel
or slender-body model of the fuselage (see Section 6.6). Nikolski [48] used instead a simple axisymmetric
fuselage flow model shown in Figure 5.13, where Va is assumed to be parallel to axisymmetric streamtubes.
Conservation of mass between the streamtube cross-section at the wing and in the Trefftz Plane gives

ṁ(y) = ρ∞V∞ π
(
y2 − (d/2)2

)
= ρ∞V∞ π ỹ2 (5.83)

y(ỹ) =
√

ỹ2 + (d/2)2 (5.84)

which assumes that the mass flux ρV magnitudes adjacent to the fuselage of maximum diameter d are nearly
the same as in the freestream.

x

ϕΔ = = ΓϕΔ TE
y

b/2

d/2
y∼

b/2
∼

streamtube area

m
.

= ΓϕΔ TE (  )y (  )y∼ y ~(      )y(  )

x

Trefftz
Plane

Figure 5.13: Axisymmetric streamtube flow around fuselage determines wake contraction from
wing to the Trefftz plane.

Equation (5.84) is the correspondence function which specifies the wing location y which is connected to
wake location ỹ by an average streamline. For a given wing circulation distribution Γ(y), the potential jump
in the wake is then given in terms of the correspondence function.

Δϕ(ỹ) = Γ(y(ỹ)) (5.85)

As an example, consider the case of an elliptical spanwise loading in the wake.

Δϕ(ỹ) = Δϕ0

√
1− (2ỹ/b̃)2 = Δϕ0 sinϑ (5.86)

b̃2 = b2 − d2 (5.87)
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The span b̃ of the wake in the Trefftz plane is given by (5.84) applied at the wing tip and wake tip. The
flat-wake Trefftz plane results give the following lift and induced drag.

A1 =
Δϕ0

2b̃V∞
(5.88)

L =
1

2
ρ∞V 2

∞ b̃2 πA1 =
π

4
ρ∞V∞ b̃Δϕ0 (5.89)

Di =
(L/b̃)2

1
2ρ∞V 2

∞ π
=

(L/b)2

1
2ρ∞V 2

∞ π

1

(b̃/b)2
(5.90)

Comparing (5.90) with (5.71) shows that the wake contraction due to the fuselage gives an effective span
efficiency of

(b̃/b)2 = 1− (d/b)2 (5.91)

which for example is 0.99 for a fuselage diameter ratio of d/b = 0.1.

5.10 Minimum Induced Drag

The minimum induced drag results (5.75),(5.76) from the Fourier series method applied only to a flat wake.
This section will consider the more general case of a non-planar wake, and will also consider other con-
straints being imposed in addition to the lift.

5.10.1 Minimum induced drag problem statement
The minimum induced drag problem for a fixed lift is stated as follows.

Given: ρ∞ freestream density
V∞ freestream speed
r′(s) wake shape
Lspec specified lift

Find: ∂ϕ/∂n (s) particular normal velocity which results in the minimum Di

Δϕ(s) wake potential jump which gives this particular ∂ϕ/∂n (s)

The lift and induced drag are given by (5.47) and (5.65), restated here for convenience.

L = ρ∞V∞

∫
Δϕ cos θ ds (5.92)

Di = −1

2
ρ∞

∫
Δϕ

∂ϕ

∂n
ds (5.93)

The implied integration limits 0 . . . smax over the entire wake will be omitted here for clarity.

The specified-lift constraint in the problem statement above is necessary to rule out the trivial solution
∂ϕ/∂n=0 , Δϕ=0. Other constraints can also be used in addition to the lift. One example is a specified root
bending moment, which strongly affects a wing’s structural weight and hence may need to be constrained
in some applications. For the typical y-symmetric wake shape, this moment about the yz origin is defined
as follows.

M0 =
1

2
ρ∞V∞

∫
Δϕ

∣∣∣ y cos θ + z sin θ
∣∣∣ ds (5.94)

Only the lift constraint will be assumed first to simplify the initial discussion of the concepts. Adding other
constraints will then be considered.
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which holds for any two fields f, g which satisfy ∇2f = 0 and ∇2g = 0. For our case we choose f = ϕ
and g=δϕ, in which case the identity shows that the two terms in the equation (5.96) integrand are actually
equal. Hence, omitting the second term and doubling the first term will not change the result.

δDi = −ρ∞

∫
Δ δϕ

∂ϕ

∂n
ds (5.97)

If Di is to be a minimum it’s necessary that it be stationary, specifically that δDi = 0, for any admissible
Δ δϕ(s) distribution along the sheet. This is satisfied by a normal velocity distribution which is everywhere
proportional to the local cos θ,

∂ϕ

∂n
(s) = Λ cos θ(s) (5.98)

where Λ is some constant. This solution can be verified by putting it into the δDi expression (5.97), to give

δDi = −ρ∞

∫
Δ δϕ Λ cos θ ds = − Λ

V∞
δL = 0 (5.99)

as required. The conclusion is that a normal velocity which is given by (5.98) results in the smallest possible
induced drag for a given lift and a given wake shape. This result is exactly consistent with the result (5.76)
obtained via the Fourier series approach for the flat wake case. The great advantage of (5.98) is that it applies
to a wake of any shape.

5.10.3 Optimum potential jump calculation
The above application of Calculus of Variations produced the optimum normal velocity distribution ∂ϕ/∂n(s).
The one remaining step is to determine the corresponding Δϕ(s). A suitable numerical approach is to use
the 2D panel method sketched in Figure 5.12. Using the AIC matrix Aij defined by (5.81), condition (5.98)
is imposed at each panel control point.

N∑
j=1

Aij Δϕj − Λ cos θi = 0 (i = 1 . . . N ) (5.100)

The constant Λ is one additional unknown in the problem. The appropriate additional equation is the
specified-lift constraint, written by using the discrete lift expression (5.78).

ρ∞V∞

N∑
i=1

Δϕi cos θi Δsi = Lspec (5.101)

Equations (5.100) and (5.101) together constitute a (N+1)×(N+1) linear system for the unknowns Δϕi , Λ.
The corresponding induced drag can then be computed by re-using the AIC matrix Aij to obtain ∂ϕ/∂ni,
and then using this in the discrete induced drag expression (5.82).

5.10.4 Additional constraints
Any number of other constraints can be added in addition to the lift, such as the root bending moment
mentioned earlier. An effective general solution technique here is define a Lagrangian function L, which is
the objective function plus all the constraints,

L(Δϕ(s) ,Λ1 ,Λ2 ...) ≡ Di + Λ1(L−Lspec) + Λ2(M0−M0spec) + . . . (5.102)
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where the Λ1,2... coefficients are Lagrange multipliers associated with the constraints, and are solved as part
of the problem. The constant Λ in the previous section was in fact the same as Λ1 here.

The constrained-optimum solution Δϕ(s),Λ1,Λ2 is defined by the requirement that L is stationary.

δL ≡ δDi + δΛ1 (L−Lspec) + δΛ2 (M0−M0spec) + Λ1 δL + Λ2 δM0 = 0 (5.103)

Substituting for δDi, δL, δM0, L,M0, and collecting terms having the same Δ δϕ, δΛ1, δΛ2 factors gives

ρ∞

∫
Δ δϕ

[
−∂ϕ

∂n
+ Λ1 V∞ cos θ + Λ2

1

2
V∞

∣∣∣y cos θ + z sin θ
∣∣∣ ]ds

+ δΛ1

[
ρ∞V∞

∫
Δϕ cos θ ds − Lspec

]
+ δΛ2

[
1

2
ρ∞V∞

∫
Δϕ

∣∣∣y cos θ + z sin θ
∣∣∣ ds − M0spec

]
= 0 (5.104)

which for optimality must be zero for any Δ δϕ(s), δΛ1, δΛ2. This requirement is met by setting all the
quantities in the brackets to zero, using the wake panel method to discretize the integrals. Since the first
bracket is inside the integral (and inside the equivalent discrete sum), it must be set to zero at each of the N
discrete panel points. In contrast, the second and third brackets set to zero are single equations. The result
is the following (N+2)× (N+2) linear system for Δϕi,Λ1,Λ2.

N∑
j=1

Aij Δϕj − Λ1 V∞ cos θi − Λ2
1

2
V∞

∣∣∣yi cos θi + zi sin θi

∣∣∣ = 0 (i = 1 . . . N ) (5.105)

ρ∞V∞

N∑
i=1

Δϕi cos θi Δsi = Lspec (5.106)

1

2
ρ∞V∞

N∑
i=1

Δϕi

∣∣∣yi cos θi + zi sin θi

∣∣∣Δsi = M0spec (5.107)

After solution, the AIC matrix Aij is re-used to obtain ∂ϕ/∂ni via (5.81), and the induced drag Di can then
be computed from (5.82).

5.10.5 Example optimum load distributions
Planar wake

As shown in Section 5.8.1, the elliptical load distribution is optimum for the case of a planar wake with
a fixed span. However, in many aircraft applications a more relevant constraint is not on the span but on
the root bending moment, since this dominates the wing’s structural weight which offsets induced drag
reductions.

To illustrate this tradeoff, Figure 5.16 shows three load distributions for three different specified spans, each
having the same lift and root bending moment. Increasing the span reduces Di significantly, even though
the resulting load distributions are very “sub-optimal” in a fixed-span sense. Referring to the Fourier Di

expression (5.71), the increase in the span b more than overcomes the increased parameter δ which measures
how much the loading deviates from elliptical.

Figure 5.17 shows the relative Di for a continuous range of spans for the flat-wing case with constrained
bending moment. With no bending moment constraint, the optimum loading is elliptical for any span, and
the induced drag then scales simply as Di ∼ 1/b2, indicated by the thin line in Figure 5.17.
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Non-planar wake

Another interesting case is a non-planar wake, such as that produced by a wing with winglets, which were
originally developed by Whitcomb [49]. A winglet acts much like a span extension in that both spread out
the shed vorticity, which reduces the velocities and kinetic energy in the Trefftz plane, and thus reduce Di.
A span increase does this more effectively than a winglet, but on the other hand a winglet produces a smaller
increase in the root bending moment.

Figures 5.18 and 5.19 show two possible ways to parameterize the geometry of the wing+winglet combi-
nation, and the resulting Di relative to the no-winglet case value Di1

. Results both without and with the
root bending moment constraint are shown. The bending moment constraint is seen to put a floor on the
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Di/Di1
ratio at about 0.84, which is comparable to the minimum value of the best flat-wing case shown

in Figures 5.16 and 5.17. The only apparent advantage of the winglet is that much of this benefit can be
obtained with a smaller overall span. The conclusion is that winglets are effective mainly in cases where the
overall span is limited by other than structural constraints. The relative merits of winglets and various other
types of non-planar lifting surface systems is discussed by Kroo [47].
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Figure 5.18: Induced drag of wing + winglet with fixed inner span, versus winglet height and angle
above horizontal. Lift is the same for all cases. Plot on right in addition has a fixed root bending
moment. The no-winglet case with elliptical loading provides the reference value Di1 , and also the
fixed lift and bending moment values.
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Chapter 6

Aerodynamics of Aircraft in Maneuver
This chapter will examine the aerodynamics of thin wings of arbitrary planform and of slender bodies in
arbitrary translation and rotation. Quasi-steady flow will be assumed.

6.1 Aircraft Motion Definition
Chapter 9 will derive in detail the Earth and body axis systems used for describing aircraft motion. Here,
a few of those key relations will be simply stated without derivation. Unless otherwise indicated, all vector
components will be assumed to be in the geometry axes shown in Figure 6.1, which have x and z reversed
from the body axes given in Chapter 9. The other axis systems will be discussed where appropriate.

6.1.1 Aircraft velocity and rotation
The aircraft motion is defined by the velocity U of its axis-origin point, and by its rotation rate Ω. Both are
shown in Figure 6.1. These are defined relative to the Earth frame, and hence they are also the velocity and
rotation rate of the aircraft relative to a still airmass.

z
y

x

α
β

ΩΩ
U

V = −U

Aircraft Velocity and Rotation Rate

x

Angles of Attack and Sideslip

rp

Up

Figure 6.1: Aircraft velocity and rotation rate U,Ω, and resulting velocity Up of body point rp.
Normalized velocity U/V∞ is specified by the angles of attack and sideslip α, β. For computation,
all vectors are specified via their components along the aircraft’s xyz geometry axes.

The aerodynamic “freestream” velocity V∞ is directly opposite to U, and is conventionally specified by the
two aerodynamic flow angles α and β, applied in that order as shown in Figure 6.1.

U =

⎧⎨⎩
Ux
Uy
Uz

⎫⎬⎭ = −V∞ = V∞

⎧⎨⎩
− cosα cos β

sin β
− sinα cos β

⎫⎬⎭ (6.1)

V∞ =
√

U2
x + U2

y + U2
z , α = arctan

−Uz
−Ux

, β = arctan
Uy√

U2
x + U2

z

(6.2)

Given these reciprocal relations, {V∞, α, β} and {Ux, Uy, Uz} are equivalent alternative parameter sets. In
practice, α, β are chosen as the independent parameters. These define the three components of the normal-
ized aircraft velocity U/V∞ via (6.1), which are needed to compute the aerodynamic forces and moments.
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6.1.2 Body-point velocity
The Earth-frame velocity of any point rp fixed on the body is given by

Up = U + Ω×rp (6.3)

as shown in Figure 6.1. If the airmass is still (without wind or gusts), then the apparent airmass velocity seen
by this point is −Up, which is in effect a “local freestream.” This will be used to formulate flow-tangency
boundary conditions in computational methods.

6.2 Axis Systems
In computational methods, the aircraft motion vectors U,Ω, and the aerodynamic force and moment vectors
F,M are most easily specified or calculated in the same xyz axes which are used to specify the geometry
itself, shown in Figure 6.1. To apply the results to aircraft performance, stability and control, and other
related disciplines it is necessary to provide these vector quantities in other more relevant axes.

6.2.1 Stability axes
The drag, sideforce, and lift force components are most commonly defined in the stability axes, which are
rotated from the geometry axes by only the angle of attack α (not by sideslip β), as shown in Figure 6.2.
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Figure 6.2: Orientation of stability-axis (freestream-aligned) aerodynamic force components
D,Y,L, moment components Ls,Ms,N s, and rotation rate components ps, qs, rs.

All the standard vector components in stability axes are defined from their components in geometry axes
using the ¯̄T

s
rotation matrix.

¯̄T
s

=

⎡⎣ cosα 0 sinα
0 1 0

−sinα 0 cosα

⎤⎦ (6.4)

⎧⎨⎩D
Y
L
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⎤⎦⎧⎨⎩Fx

Fy

Fz

⎫⎬⎭ ,

⎧⎨⎩ Ls
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N s

⎫⎬⎭ =

⎡⎣ ¯̄T
s

⎤⎦⎧⎨⎩−Mx

My

−Mz

⎫⎬⎭ ,

⎧⎨⎩ps

qs

rs

⎫⎬⎭ =

⎡⎣ ¯̄T
s

⎤⎦⎧⎨⎩−Ωx

Ωy

−Ωz

⎫⎬⎭ (6.5)

Note that the moment and rotation-rate components, Ls,N s and ps, rs, have reverse signs compared to the
force components D,L. In effect, the stability axes used for the moments and rates are rotated by 180◦

about the y axis relative to the stability axes used for the forces. Note also that the ¯̄T
s

matrix leaves all the
vector y components unchanged. Hence we have Y =Fy , Ms=My , qs=Ωy.
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6.2.2 Wind axes
The stability axes are not quite appropriate when examining the drag of an aircraft in sideslipping flight with
β �= 0, since the drag D as defined by the ¯̄T

s
matrix in (6.5) is not the true streamwise drag force. In this

situation we can invoke the wind axes, which are implemented by the rotation matrix ¯̄T
w

, which consists of
α and β rotations, applied in that order as shown in Figure 6.1.⎧⎨⎩D

Y
L

⎫⎬⎭ =

⎡⎣ ¯̄T
w

⎤⎦⎧⎨⎩Fx

Fy

Fz

⎫⎬⎭ (6.6)

¯̄T
w

=

⎡⎣cosβ −sinβ 0
sinβ cosβ 0
0 0 1

⎤⎦⎡⎣ cosα 0 sinα
0 1 0

−sinα 0 cosα

⎤⎦ =

⎡⎣cosβ cosα −sinβ cosβ sinα
sinβ cosα cosβ sinβ sinα
− sinα 0 cosα

⎤⎦ (6.7)

Note that the drag as defined by the ¯̄T
w

matrix in (6.6) is exactly equivalent to the dot product of the total
force and the unit freestream.

D = F ·V∞/V∞ (6.8)

Furthermore, the sideforce Y produced by ¯̄T
w

in (6.6) is almost the same as that produced by ¯̄T
s

in (6.5),
and the lift L is identical. Because the simple relation (6.8) is available to define the exact D when needed,
and the exact Y is of relatively little importance, wind axes see little use in practice.

6.3 Non-Dimensionalization and Parameterization

6.3.1 Dimensionless variables
Aerodynamic characteristics are almost invariably defined, described, or provided in terms of the following
dimensionless force coefficients, moment coefficients, and rotation rates. The latter two are commonly used
in either the body or the stability axes.

CD =
D

q∞ Sref

CY =
Y

q∞ Sref

CL =
L

q∞ Sref

C� =
L

q∞ Sref bref

Cm =
M

q∞ Sref cref

Cn =
N

q∞ Sref bref

p̄ =
p bref
2V∞

q̄ =
q cref
2V∞

r̄ =
r bref
2V∞

(6.9)

All the reference quantities are arbitrary. The traditional choice for the reference area Sref is the projected
wing area S. This typically includes any hidden “carry-through” wing area inside a fuselage, but may
exclude root fairings or fillets. The choice for bref is the actual projected wingspan, which may or may not
include tip devices such as winglets. The traditional choice for cref is the wing’s mean aerodynamic chord,

cref = cmac ≡ 1

S

∫ b/2

−b/2
c(y)2 dy (6.10)

which is in effect a root-mean-square chord. Workable alternatives are the average chord cref = S/b, or
simply the root chord cref = c(0).

Theoretically, additional important parameters are the dimensionless flow-angle rates.

¯̇α =
α̇cref
2V∞

¯̇
β =

β̇bref
2V∞

(6.11)
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This ¯̇α quantifies the strength and influence of the wing’s shed vorticity, which is present in unsteady airfoil
flows and is discussed in more detail in Section 7.4.2. In brief, ¯̇α determines the time delay in the wing’s
downwash seen by the horizontal tail, and therefore during pitching maneuvers it influences the time evolu-
tion of the overall Cm, and to a lesser extent of the CL also. In most aircraft ¯̇β has relatively little influence
and is usually ignored, although it may be significant for unusual aircraft configurations.

6.3.2 Quasi-steady force and moment parameterization
Dimensional analysis indicates that all the force and moment coefficients have the following parametric
dependence for steady flows. The same dependencies also approximately hold for quasi-steady flows such
as an aircraft in slow maneuver.

CD = CD(α, β, p̄, q̄, r̄, ¯̇α,
¯̇
β, δT , δa, δe, δr, M∞, Re∞)

CY = CY (α, β, p̄, q̄, r̄, ¯̇α,
¯̇β, δT , δa, δe, δr, M∞, Re∞)

...
Cn = Cn(α, β, p̄, q̄, r̄, ¯̇α,

¯̇
β, δT , δa, δe, δr, M∞, Re∞)

The parameters δT , δa, δe, δr are throttle, aileron, elevator, rudder control parameters (there may be more).
These represent thrust settings or control-surface deflection angles, which influence the overall force and
moment on the aircraft.

Figure 6.3 shows typical flows over the entire possible α, β range, most of which involve large-scale separa-
tion and flow reversal. The result is that the force and moment coefficients have complicated dependencies
on the operating parameters, as indicated in the sample CL(α) and Cn(β) line plots in Figure 6.3.
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Figure 6.3: Aircraft α, β flow parameter space (remaining parameters p̄, q̄, r̄ . . . not shown). CL(α)

variation is shown for parameter slice A, and Cn(β) variation is shown for slices B, C. The linearized
force or moment representations, indicated by dashed lines, are valid in a sufficiently small region
near the chosen baseline operating point. Two baseline points 1, 2 at two different α0 values are
indicated, with the stability derivative CLα changing dramatically between the two points.
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The overall parameter space is enormously larger than the two-axis slice shown in Figure 6.3, since there
are additional axes for p̄, q̄, r̄, ¯̇α, ¯̇β, δT . . . ,M∞, Re∞. For many applications, such as mission performance
estimates, stability and control analysis and design, etc., the force and moment coefficients only need to be
defined within a small region of the parameter space, described by small deviations about some operating
point or trim state, denoted by the ()0 subscript. Here the force and moment coefficient functions can be
approximated by their linearized forms, or equivalently their first-order Taylor series approximations.

CL 	 CL0 + CLα Δα + CLq Δq̄ + CLα̇
Δ ¯̇α + CLδe

Δδe (6.12)
Cn 	 Cn0 + Cnβ

Δβ + Cnp Δp̄ + Cnr Δr̄ + Cnδr
Δδr (6.13)

...
where

CL0 = CL(α0,β0,...)

Cn0 = Cn(α0,β0,...)
...

CLα = ∂CL/∂α (α0,β0,...)

Cnβ
= ∂Cn/∂β (α0,β0,...)
...

CLq = ∂CL/∂q̄ (α0,β0,...)

Cnp = ∂Cn/∂p̄ (α0,β0,...)...

· · ·
· · · (6.14)

The series variables are the aerodynamic parameter perturbations from the trim state.

Δα = α− α0 Δβ = β − β0 Δp̄ = p̄− p̄0 . . . (6.15)

The series coefficients CLα , CLq . . . are stability derivatives, and CLδe
, Cnδr

. . . are control derivatives.
These play a crucial role in aircraft flight dynamics and stability and control, as outlined in Chapter 9.
Note that these coefficients can substantially depend on the baseline trim state values, and some may have
their signs reversed between different trim states, as for example CLα shown in Figure 6.3.

6.4 Lifting Surface Theory

Lifting surface theory is an extension of thin airfoil theory to 3D. It models the flow about the wings and
tails of a general 3D aircraft configuration using vortex sheets γ(s,�), or the equivalent normal-doublet sheets
μ(s,�). The objective is to represent the lift, sideforce, moments, and induced drag of the configuration using
only the camber surface shapes, with the volume effects of the various components being ignored.

6.4.1 Vortex/doublet sheet geometry
The assumed geometry of the vortex or doublet sheets is shown in Figure 6.4. The sheets are assumed to be
everywhere parallel to the x axis, with the camber-surface shapes of the actual geometry represented only by
their normal vector distribution n̂(s,�). The sheet strengths γ(s,�) or μ(s,�) are unknown only over the extent
of the actual surface. On the trailing wake portions of the sheets, the strengths are constant in x, and equal
to their trailing-edge values.

γ(s) = γ(s,�TE) · x̂ (on wake)
or μ(s) = μ(s,�TE) (on wake)

(6.16)

These are also the sheet strengths in the Trefftz plane, as shown in Figure 6.4.

6.4.2 Lifting-surface problem formulation

The perturbation velocity field of the vortex sheet distribution is given by the superposition integral (2.16),

Vγ (r) =
1

4π

∫∫
γ(s,�)× r−r′

| r−r′|3
ds d� (6.17)
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Figure 6.4: 3D configuration represented using a lifting-surface model. The model consists of vortex
sheets with strength γ(s,�) on the surfaces, and γ(s) x̂ on the trailing wakes and in the Trefftz plane.

where r′(s,�) is the assumed vortex sheet geometry. The integral is over both the surface and wake vortex
sheets. With an airmass which is still in the Earth frame, the total fluid velocity observed by a point r fixed
in the body frame is then obtained by subtracting that point’s velocity Up as given by (6.3).

V(r) = Vγ − (U+Ω×r) (6.18)

The flow-tangency boundary condition is then

V(r) · n̂ =
[
Vγ − (U+Ω×r)

]
· n̂ = 0 (6.19)

for each r(s,�) surface point. The Kutta condition

γ(s,�TE) × x̂ = 0 (6.20)

is also applied all along the trailing edge of each surface. Equations (6.17), (6.19), (6.20) together constitute
an integral-equation problem for the unknown γ(s,�) distribution. If instead μ(s,�) is chosen as the unknown
variable, then γ = n̂×∇̃μ would be substituted into all the above expressions. This lifting-surface problem
can be solved by the Vortex Lattice Method, described later in Section 6.5.

6.4.3 Near-field loads
Once the surface vortex sheet strength γ(s,�) distribution is known from the solution of the lifting-surface
problem as described above, the resulting pressure jump or equivalently the loading can be determined using
the Bernoulli equation as follows.

Δp ≡ pl − pu = 1
2ρ Δ(V·V) = ρVa · ΔV (6.21)

ΔV ≡ Vu − Vl = γ × n̂

Va ≡ 1
2 (Vu+Vl) = (Vγ)a − (U+Ω×r)
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The ()u and ()l subscripts denote the upper and lower sides of the surface, as also used in Section 5.4 for a
wake. Here (Vγ)a is the velocity of the entire vortex sheet configuration, averaged between two field points
on the two sides of the sheet. An equivalent version of the loading expression (6.21) is

Δp n̂ = ρVa×γ (6.22)

which in effect is a local Kutta-Joukowsky relation.

The lifting surface approximation largely neglects the details of the flow in the leading edge region, which
consequently requires a special treatment in the force calculations. Figure 6.5 shows the actual (p∞−p) n̂
surface load vectors on 2D inviscid airfoils of different thicknesses. The strongly negative pressure distribu-
tion acting on the small leading radius is known as leading edge suction, and is the mechanism by which the
pressure drag of the aft-pointing pressure forces over the rest of the airfoil are canceled. In 2D the cancella-
tion is theoretically perfect, while in 3D the cancellation is partial but still very significant. This problem of
properly capturing pressure drag was raised previously in the near-field force analysis in Section 5.1.2.

n

NACA 0008

NACA 0004

Flat  Plate

−

FLE

p)p(

(Lifting Surface)

Δpn

Figure 6.5: Surface pressure vectors on inviscid NACA 0008 and NACA 0004 airfoils at α = 5◦

computed with a panel method. In the zero thickness limit the leading edge suction becomes a
tangential force F′

sLE
, and the remaining pressure loads are represented by the Δp n̂ distribution.

The leading edge suction force can be determined by applying the integral momentum theorem to a control
volume enclosing the leading edge point, and assuming that the local vortex sheet strength varies as

γ(x) 	 C√
x

where x is the distance from the leading edge and C is some constant. The resulting suction force per
leading edge arc length is

F′
sLE

=
π

4
ρC2 t̂

C = lim
x→0

(
γ
√
x
) (6.23)

where C is now determined from the actual sheet strength γ(s,�) of the solution, and t̂ is the unit tangential
vector pointing ahead of the leading edge, and normal to both n̂ and the leading edge line.

The overall force and moment on the configuration from the normal forces are finally obtained by integration
of the pressure loading distribution and also the leading edge suction forces over all the surfaces.

F =
∑

surfaces

∫∫
surface

Δp n̂ ds d� +

∫
L.E.

F′
sLE

ds (6.24)

M =
∑

surfaces

∫∫
surface

Δp r×n̂ ds d� +

∫
L.E.

r×F′
sLE

ds (6.25)
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The integration over the wakes is not performed. The rationale is that a real wake must have Δp=0 anyway,
even if this isn’t quite true in the simplified lifting-surface model in which the wake γ is assumed to be
aligned with x̂. To get a truly force-free wake in the model would require aligning the wake geometry and
its strength γ with the local Va direction. This would make the lifting surface problem nonlinear, since the
geometry of the vortex sheets would then depend on the flow solution itself. All these complications are
sidestepped by assuming the fixed x̂ wake direction and simply ignoring the resulting implied wake loads.

6.4.4 Trefftz-plane loads

An alternative to the above near-field force calculation is to use the far-field or Trefftz-plane approach. In
general, this is a more reliable approach especially for the Di component, since it avoids the usual pressure-
drag cancellation errors discussed in Chapter 5, these being especially problematic with the simple leading
edge suction model.

Referring to Figure 5.7, the first step here is to compute the Trefftz-plane perturbation velocity

∇ϕ(s) =
∑
sheets

1

2π

∫ smax

0
γ(s′)

x̂× (r−r′)

|r−r′|2
ds′ (6.26)

at each sheet location r(s), where the integral is taken along all sheet traces shown in Figure 6.4. The wake
sheet potential jump is also required.

Δϕ(s) =

∫ s

0
γ(s′) ds′ (6.27)

or Δϕ(s) = μ(s) (6.28)

The induced drag is then computed directly via expression (5.47).

Di =
∑
sheets

−1

2
ρ

∫ smax

0
Δϕ ∇ϕ · n̂ ds (6.29)

The Trefftz plane also provides alternative means of computing the total lift and sideforce via expressions
(5.64) and (5.65).

Y =
∑
sheets

ρV∞

∫ smax

0
−Δϕ ny ds (6.30)

L =
∑
sheets

ρV∞

∫ smax

0
Δϕ nz ds (6.31)

Note however, that this Trefftz plane force calculation method gives only the total forces. Equations (6.24)
and (6.25) must be used for moments, and also for forces on the individual surfaces.

6.5 Vortex Lattice Method

The Vortex Lattice (VL) method is a numerical solution implementation of the general 3D lifting surface
problem described above. It is also the simplest general 3D potential flow calculation method. It is com-
monly used in initial aircraft configuration development, where its simplicity and speed allow a large number
of configurations to be examined. It is also used for initial structural load estimation, and to provide the trim
state values and stability and control derivatives for the linearized force and moment equations (6.12), (6.13).
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6.5.1 Vortex lattice discretization
The VL method discretizes the vortex-sheet strength distribution on each lifting surface and its wake by
lumping it into a collection of horseshoe vortices, as shown in Figure 6.6. Each horseshoe vortex (h.v.)
consists of three straight legs, or segments: a bound leg which lies on the surface, and two trailing legs
extending from the bound leg’s endpoints to downstream infinity and parallel to the x axis. All three legs of
the i’th h.v. have the same constant circulation strength Γi.
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Δϕ
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ΓiΔϕ =)Δ(

Δϕ
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Figure 6.6: 3D lifting surface discretized by a Vortex Lattice of horseshoe vortices, which all con-
tribute to the velocity V at any field point r. Setting r at each control point allows imposition of
flow tangency there. Each horseshoe vortex i also adds a contribution of Γi to the total potential
jump Δϕ within its perimeter. Total accumulated Δϕ along a chord strip is the Trefftz-plane value
shown in Figure 5.12.

In a discrete sense, this configuration of vortices satisfies the zero-divergence requirement on the vortex sheet
strength γ(s,�) which is discussed in Section 2.4, since any circuit drawn on the surface will have a filament
with a fixed circulation both entering and leaving it. Note also that each h.v. adds zero net circulation in the
Trefftz plane, where its two trailing legs have equal and opposite circulations.

An equivalent interpretation of the h.v. configuration is a piecewise-constant potential jump or normal-
doublet distribution. Each h.v. contributes Δ(Δϕ) = Γi to the total potential jump Δϕ within its perimeter.
The total circulation of all the h.v.’s in a chord strip then gives the Δϕ in the Trefftz plane, as shown in
Figure 6.6. This Δϕ is also shown in Figure 5.12, where it’s used to construct the Trefftz-plane velocity and
evaluate the Trefftz-plane forces.

6.5.2 Velocity field representation
The overall velocity field relative to the VL configuration at any point r is given by relation (6.18), where
the γ(s,�) vortex-sheet strength is now lumped into the collection of h.v. filaments, with each filament having
a constant strength Γi. The surface integral in (6.17) is therefore replaced with a collection of Biot-Savart
line integrals, one for each h.v.

V(r) =
∑
h.v.’s

Γ

4π

∫
d�′× (r−r′)

| r−r′|3
− (U + Ω×r)

=
N∑
i=1

Γi V̂i(r) − (U + Ω×r) (6.32)
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Evaluation of the Biot-Savart integral of the i’th h.v. has produced the V̂i kernel function, given by the
following expression. The a and b vectors are shown in Figure 6.7.

V̂i(r) =
1

4π

{
a× b

|a||b|+ a · b

(
1

|a| +
1

|b|

)
+

a× x̂

|a| − a · x̂
1

|a| − b× x̂

|b| − b · x̂
1

|b|

}
(6.33)

The three terms in (6.33) correspond to the bound leg, the ra-point trailing leg, and the rb-point trailing leg,
respectively. Note that V̂i has units of 1/length.
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Figure 6.7: Geometry of one horseshoe vortex, producing a unit-strength velocity V̂i(r) at some
field point r.

6.5.3 Flow tangency condition
The flow tangency condition (6.19) is imposed at the N control points by choosing r in (6.32) to be the
control point rci of each h.v. in turn, and setting the resulting normal velocity component to zero.

V(rci ) · ni(δl) =

(
N∑

j=1

Γj V̂j(r
c
i ) − (U+Ω×rci )

)
· ni(δl) = 0 (i = 1 . . . N ) (6.34)

To avoid conflict with the control point index i, the summation index over the h.v.’s has been changed to j.

The normal vector ni depends on δl, which are control variables which define the deflections of some
number of control surfaces. The control index l = 1, 2 . . . Nl is more practical for computation than the
earlier δa, δe . . . notation introduced in Section 6.3.2.

The deflections are modeled by rotating each ni on that control surface about a specified hinge axis. In
keeping with the small-angle approximations used throughout lifting surface theory and the VL method in
particular, each normal vector’s dependence on δl is linearized. Referring to Figure 6.8 we have

ni(δl) 	 n0i
+

Nl∑
l=1

nli
δl (6.35)

nli
≡ ∂ni

∂δl
= gl ĥli

×n0i
(6.36)

where ĥl is the hinge-axis unit vector about which n rotates in response to the δl control deflection, and gl
is the “control gain,” included so that the δl control variable doesn’t have to be the actual local deflection
angle in radians. To linearize the control influence we will assume that −Uxx̂ 	 V∞ x̂ which is equivalent to
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α, β � 1, and that the normal-vector control deflections nli
δl are small compared to the undeflected normal

vector n0i
. Thus the flow-tangency equations (6.34) are approximated by(

N∑
j=1

Γj V̂j (r
c
i ) − (U+Ω×rci )

)
· n0i

+

Nl∑
l=1

V∞ x̂ · nli
δl = 0 (i = 1 . . . N ) (6.37)

where all products of two small quantities have been dropped.
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Figure 6.8: Flow tangency imposed at control point of i’th horseshoe vortex, biased by rotation of
the normal vector ni via the control variables δl.

6.5.4 Linear system setup and solution
The subsequent numerical implementation of equations (6.37) will be done in terms of the following vari-
ables normalized with V∞, denoted by the overbar (̄ ). Note that Ū is then dimensionless, while Γ̄ and Ω̄

have units of length and 1/length, respectively.

Γ̄i ≡ Γi
V∞

, Ū ≡ U

V∞
=

⎧⎨⎩
Ūx
Ūy
Ūz

⎫⎬⎭ =

⎧⎨⎩
− cosα cosβ

sinβ
− sinα cosβ

⎫⎬⎭ , Ω̄ ≡ Ω

V∞
=

⎧⎨⎩
Ω̄x

Ω̄y

Ω̄z

⎫⎬⎭ (6.38)

The linearized flow tangency conditions (6.37) constitute an N ×N linear system for the Γ̄i normalized
vortex strengths when the Ū, Ω̄, δl terms are placed on the righthand side.[

Aij

]{
Γ̄j

}
= Ūx

{
x̂ · n0i

}
+ Ūy

{
ŷ · n0i

}
+ Ūz

{
ẑ · n0i

}
+ Ω̄x

{
x̂×rci · n0i

}
+ Ω̄y

{
ŷ×rci · n0i

}
+ Ω̄z

{̂
z×rci · n0i

}
+ δ1

{
−x̂ · n1i

}
+ δ2

{
−x̂ · n2i

}
+ . . . + δNl

{
−x̂ · nNli

}
(6.39)

Aij ≡ V̂j(r
c
i ) · n0i

(6.40)

The Aerodynamic Influence Coefficient matrix Aij and the righthand side vectors in braces are functions
of the vortex lattice geometry only, and hence are known a priori.

Multiplying (6.39) through by A−1
ij using LU-factorization and back-substitution gives the solution vector

Γ̄i as a sum of known 6+Nl independent vectors, whose coefficients (arbitrary at this point) are the operating
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parameters Ūx, Ūy . . . δNl
. When these parameters are specified, Γ̄i is determined by summing all 6+Nl

vectors.{
Γ̄i

}
= Ūx

{
Γ̄1i

}
+ Ūy

{
Γ̄2i

}
+ Ūz

{
Γ̄3i

}
+ Ω̄x

{
Γ̄4i

}
+ Ω̄y

{
Γ̄5i

}
+ Ω̄z

{
Γ̄6i

}
+

Nl∑
l=1

δl

{
Γ̄6+li

}
(6.41)

6.5.5 Near-field force and moment calculation
Once the Γ̄i strengths are known, the normalized velocity relative to the midpoint ri of the i’th h.v. is
calculated, as shown in Figure 6.9. This uses the same form as (6.32),

Vi

V∞
≡ V̄i =

⎧⎨⎩
V̄xi
V̄yi
V̄zi

⎫⎬⎭ =

N∑
j=1

Γ̄j V̂j(ri) −

⎧⎨⎩
Ūx
Ūy
Ūz

⎫⎬⎭ −

⎧⎨⎩
Ω̄x

Ω̄y

Ω̄z

⎫⎬⎭× ri (6.42)

ri = 1
2 (ra + rb) (6.43)

except the h.v. kernel functions V̂j here are different than those in the flow-tangency condition (6.34), since
the bound-leg midpoint locations ri are different from the control-point locations rci . In the V̂j function
in (6.42) it is also necessary to omit the bound leg’s contribution on itself, which is the first term in (6.33),
since this is singular at ri.

The normalized force F̄i on each h.v. is computed by the integrated form of the local pressure loading
relation (6.22).

Fi =

∫∫
element

Δp n̂ dS =

∫∫
element
ρVa×γ dS = ρVi× �i Γi (6.44)

where �i = rb − ra

F̄i ≡ Fi
1
2ρ∞V 2

∞Sref
	 2

Sref
V̄i× �i Γ̄i (6.45)

The last step in (6.44) consists of lumping the vortex sheet on the element into the element h.v.’s bound leg
vortex segment,

∫∫
γ dS 	 �iΓi. The relevant quantities are shown in Figure 6.9.

Interestingly enough, the Kutta-Joukowsky force calculation form (6.45) gives exactly zero drag in the 2D
case where there are no trailing h.v. legs. Therefore it implicitly accounts for the leading edge suction force,
which then does not need to be added explicitly.

The total normalized force and moment on the whole configuration are obtained by summation of all the
individual h.v. contributions. The moment is defined about a specified point rref .

F̄ =

N∑
i=1

F̄i (6.46)

M̄ =

N∑
i=1

(ri−rref)×F̄i (6.47)

The standard dimensionless force and moment coefficients in stability axes, shown in Figure 6.2, are ob-
tained by rotating F̄ and M̄ using the ¯̄T

s
matrix given by (6.5). The reference span and chord bref , cref are
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Figure 6.9: Net pressure loading on a surface element approximated by the Kutta-Joukowsky force
on the element’s horseshoe vortex bound leg �i.

also used here to non-dimensionalize the moments.⎧⎨⎩CDi

CY

CL

⎫⎬⎭ =

⎡⎣ ¯̄T
s

⎤⎦⎧⎨⎩F̄x

F̄y

F̄z

⎫⎬⎭ (6.48)

⎧⎨⎩
C ′
�

C ′
m

C ′
n

⎫⎬⎭ =

⎡⎣ ¯̄T
s

⎤⎦⎧⎨⎩
−M̄x/bref
M̄y/cref

−M̄z/bref

⎫⎬⎭ (6.49)

If there is a nonzero sideslip, β �=0, then the physically correct expression for the induced drag coefficient
is given by the wind-axis relation (6.8).

CDi = −F̄ · Ū (6.50)

6.5.6 Trefftz-plane force calculation
As discussed in Section 6.4.4, the Trefftz-plane provides an alternative to the near-field result (6.6) for
calculating the wind-axes forces. A suitable discrete formulation of the Trefftz-plane integrals which is
applicable to the VL method here was already given in Section 5.8.2. To apply those results it is first
necessary to define the piecewise-constant wake potential jump distribution Δϕi for each h.v. “chord strip,”
shown in Figure 6.6, whose h.v.’s have their trailing legs superimposed in the Trefftz-plane.

Δϕ̄i =
∑
strip

Γ̄i (6.51)

The summation is only over the h.v.’s within that chord strip, indicated in Figure 6.6. The normalized
version of expression (5.81) for the wake-normal velocity ∂ϕ̄/∂ni and expressions (5.77), (5.78), (5.82) for
the forces Y,L,Di can then be used as written.
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6.5.7 Stability and control derivative calculation
The VL method is well suited to rapid calculation of stability and control derivatives in the small-angle
operating range α, β, p̄, q̄, r̄�1. The calculation can be performed by finite-differencing slightly perturbed
flow solutions, e.g.

CLα 	 CL(α0+Δα , β0)− CL(α0 , β0)

Δα
, Cnβ

	 Cn(α0 , β0+Δβ) − Cn(α0 , β0)

Δβ
(6.52)

A more economical alternative is to implicitly differentiate the overall force and moment summations with
respect to each parameter via the chain rule, noting that Γ̄i as given by (6.41) and V̄i as given by (6.42) have
relatively simple dependencies on the parameters. For example, the α-derivatives of the following quantities
can be evaluated in parallel with each quantity itself.

∂Ū

∂α
=

{
sinα cosβ

0
−cosα cosβ

}
(6.53)

∂Γ̄i
∂α

=
∂Ūx

∂α
Γ̄1i +

∂Ūz

∂α
Γ̄3i (6.54)

∂V̄i

∂α
=

N∑
j=1

∂Γ̄j
∂α

V̂j(ri) −
∂Ū

∂α
(6.55)

∂F̄i

∂α
=

2

Sref

(
∂V̄i

∂α
× �i Γ̄i + V̄i× �i

∂Γ̄i
∂α

)
(6.56)

∂F̄

∂α
=

N∑
i=1

∂F̄i

∂α
(6.57)

∂

∂α

⎧⎨⎩CDi

CY

CL

⎫⎬⎭ =
d ¯̄T

s

dα
F̄ + ¯̄T

s ∂F̄

∂α
(6.58)

Note how each derivative calculation uses the derivatives calculated earlier. The final result (6.58) is the
sought-after force stability derivatives with respect to α. The same procedure is used for the moment deriva-
tive vector. The procedure is also repeated for all the remaining parameters β, p̄, q̄, r̄, δl. The advantage
of this direct differentiation method over the finite-difference approach (6.52) is that it is economical and
effectively exact.

6.6 Slender Body Theory
Slender Body Theory is applicable to bodies such as slender fuselages and nacelles, and also to very slender
delta wings with AR� 1. The key simplifying assumption, and the definition of “slender,” is that the yz-
plane cross sections of the body and the flow vary slowly in the streamwise x direction relative to the y, z
directions. This implies that the streamwise component ϕx of the perturbation velocity ∇ϕ is negligible
compared to the transverse components ϕy, ϕz .

ϕx � ϕy , ϕz (6.59)

It’s useful to note the similarities with the Trefftz plane, introduced in Section 5.6.

6.6.1 Slender body geometry
The geometry of the body is specified by its surface position vector

r̃(x,s) = x x̂ + [ ỹ(s ;x) ] ŷ + [ z̃(s ;x) ] ẑ (6.60)
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where s is some parameter, such as the arc length in the yz plane. This defines the ỹ, z̃ cross-section shape of
the body at some x location, as shown in Figure 6.10. Since the vectors ∂r̃/∂s and ∂r̃/∂x are both tangent
to the body surface, the unit normal vector can be determined via their cross product.

n(x,s) =
∂r̃

∂s
× ∂r̃

∂x
=

[
∂ỹ

∂s

∂z̃

∂x
− ∂z̃

∂s

∂ỹ

∂x

]
x̂ +

∂z̃

∂s
ŷ − ∂ỹ

∂s
ẑ , n̂ =

n

|n| (6.61)

In practice, the dimensional normal vector n is simpler and is adequate for the construction of flow tangency
boundary conditions.
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Figure 6.10: Slender body’s perturbation velocity ∇ϕ is nearly two-dimensional in the transverse
yz plane. Body cross section at each station x is given by the ỹ(s ; x), z̃(s ; x) coordinate functions.

6.6.2 Slender body flow-field
The body is assumed to move at steady velocity U = −V∞ x̂ and pitch rate Ω = q ŷ, so the local apparent
freestream is −Up = −(U + Ω×r) = V∞ x̂ + qx ẑ. Any angle of attack or sideslip is assumed to be
included in the r̃ geometry definition. The perturbation potential ϕ(x,y,z) of the flow about the slender body
is assumed to locally satisfy the two-dimensional crossflow Laplace’s equation

ϕyy + ϕzz = 0 ( for y2+z2 � �2 ) (6.62)

where � is the length of the body. Dropping the ϕxx term has been justified by the slender-flow assump-
tion (6.59). The appropriate boundary conditions are flow tangency of the total velocity on the body surface,
and asymptotically zero perturbation flow far away.

[ (V∞+ϕx) x̂+ ϕy ŷ + (qx+ ϕz) ẑ ] · n = 0

or ϕy ny + ϕz nz 	 −(V∞ nx + qxnz) ( on body ) (6.63)

and ϕ → 0 (for y2+z2 � �2) (6.64)

The ϕxnx term has been dropped from the right side of (6.63) since it is negligible relative to the other
terms.

Laplace’s equation (6.62) and boundary conditions (6.63),(6.64) define a 2D incompressible potential flow
with a known nonzero normal velocity −(V∞ nx + qxnz) which is due to the pitch rate and also the incli-
nation of the body surface relative to the freestream x direction. Such a flow is sketched in Figure 6.10 on
bottom right. It can be computed for a given arbitrary cross-section using any standard 2D panel method, but
with a different righthand side than usual. To compute the overall 3D flow, some sufficiently large number
of individual 2D problems would actually have to be solved, one for each discrete x location.
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Once the potential ϕ(x,y,z) is computed, the pressure is determined using the Bernoulli equation.

p + 1
2ρ

[
(V∞+ ϕx)

2 + ϕ2
y + ϕ2

z

]
= p∞ + 1

2ρV
2

∞

p− p∞ = −ρV∞ϕx − 1
2ρ

(
ϕ2
y + ϕ2

z

)
(6.65)

Even though the streamwise perturbation velocity ϕx was neglected in the local 2D problem defined by
Laplace’s equation (6.62) and boundary condition (6.63), it is required for the pressure calculation. The
reason is that V∞ϕx is not necessarily negligible compared to ϕ2

y+ϕ2
z and hence must be retained here.

6.6.3 2D unsteady flow interpretation
The sequence of solutions along x can be interpreted as a 2D unsteady flow ϕ(t,y,z) if we make the Galilean
transformation

x = V∞ t ,
∂

∂x
=

1

V∞

∂

∂t

where the new observer is traveling along the x axis at the freestream speed V∞. The ỹ(s ; t), z̃(s ; t) cross-
sectional shape in the transverse plane and the resulting transverse flow then appear to change in time. In
this unsteady interpretation the streamwise perturbation velocity transforms as ϕx→ϕt/V∞, which converts
the steady 3D Bernoulli equation (6.65) into its 2D unsteady form which gives the same pressure.

p− p∞ = −ρϕt − 1
2ρ

(
ϕ2
y + ϕ2

z

)
In practice, when solving the 2D Laplace problem (6.62)–(6.64), the spatial sequence in x or the time
sequence in t are computationally equivalent. And for computing the pressure, the 3D steady or the 2D un-
steady Bernoulli equations are equivalent as well. Therefore, this transformation and unsteady interpretation
does not provide any computational advantages, but it does give some additional insight into the problem.

6.6.4 Local 2D far-field
At intermediate distances which are large compared to the local body y, z dimension but small compared to
the body length �, the perturbation potential must have a local 2D far-field form as given by (2.78).

ϕ(r,θ ;x) =
Λ(x)

2π
ln r +

κz(x)

2π

sin θ

r
(6.66)

where r(x,y,z) ≡
√

y2 + (z−z0(x))2

θ(x,y,z) ≡ arctan
z−z0(x)

y

The vortex term was omitted since there cannot be an overall circulation about this 3D body. The y doublet
was omitted by the assumption of left/right symmetry about y=0, and it can always be eliminated in any
case by rotating the axes so that the z axis aligns with the doublet-vector axis. Also, for generality the
singularities are placed at some location z= z0(x) rather than at z=0.

The source strength is related to the body’s cross-sectional area A(x) as derived in Section 2.12.

Λ(x) = V∞
dA

dx
(6.67)

The z-doublet is related to the lift via the the far-field lift integral (5.50). This requires the pressure, which
is obtained from the Bernoulli equation (6.65),

p∞− p = ρV∞ ϕx = ρV∞
dκz
dx

sin θ

2πr
(6.68)
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The quadratic terms in (6.65) have been omitted here, since they become negligible at a sufficiently large
control volume. Following the procedure in Section C.4, integral (5.50) is now evaluated on a dx–long
circular control volume of some radius r, whose arc length element is dl = r dθ.

dL

dx
=

∮
[ (p∞−p)nz − ρϕz ϕr ] dl = ρV∞

dκz
dx

∫ 2π

0

sin2θ

2πr
r dθ

=
1

2
ρV∞

dκz
dx

(6.69)

Using (6.69) to calculate the overall lift of the body still requires relating κz to the body geometry, which in
general is case-dependent. A simple geometry is considered next as an example.

6.6.5 Cambered body of revolution
A cambered body with circular cross sections is shown in Figure 6.11. Its surface geometry is defined by

r̃(x,θ) = x x̂ + [R cos θ ] ŷ + [R sin θ + Z − αx ] ẑ (6.70)

where Z(x) is the camber of the centerline, α is the overall body angle of attack, and R(x) is the radius of
the local circular cross-section which is centered on z = z0(x) = Z(x)− αx.

The local normal vector is computed from (6.70) using the cross-product relation (6.61), with θ = s/R.

n(x,θ) =

[
−R

dR

dx
+

(
α− dZ

dx

)
R sin θ

]
x̂ +

[
R cos θ

]
ŷ +

[
R sin θ

]
ẑ (6.71)
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Figure 6.11: Slender body of revolution with overall angle of attack α, local added camber Z(x),
and resulting local angle of attack α̃(x). Local transverse flow is represented by source strength Λ(x)

and z-doublet strength κz(x), both located at the body center at z0(x). Vortex sheets are shed if a
blunt base is present.

In terms of the cross-sectional area A(x) = πR2, the far-field source and doublet strengths are

Λ(x) = 2πV∞R
dR

dx
= V∞

dA

dx
(6.72)

κz(x) = 2πV∞ R2 α̃ = 2V∞ A α̃ (6.73)

α̃(x) ≡ α − dZ

dx
+

qx

V∞
(6.74)

where α̃ is the local angle of attack of the body centerline relative to the local body velocity Up. The
potential expression (6.66) with the strengths (6.72),(6.73), and the geometry given by (6.70) all together
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exactly satisfy the 2D Laplace’s equation (6.62) and boundary conditions (6.63), (6.64). Therefore this
far-field flow happens to be an exact solution of the transverse-flow equations for this geometry.

With the z-doublet strength known, the overall lift can be obtained by integration of the lift gradient (6.69).

L =

∫ �

0

dL

dx
dx = ρV 2

∞

∫ �

0

d(Aα̃)

dx
dx = ρV 2

∞ A(�) α̃(�) (6.75)

This final result shows that within the assumptions of potential flow, the lift of a slender body of revolution
depends only on its base area A(�) and the local angle of attack α̃(�) at the base location. Trefftz-plane
analysis requires that any lifting body must generate trailing vorticity, and indeed the blunt base will shed
the necessary vortex sheets as sketched in Figure 6.11. A related conclusion is that bodies which come to a
sharp point at the rear cannot generate lift, since they cannot shed vorticity in the absence of flow separation.

The lift distribution dL/dx will also produce the following overall pitching moment (positive about the y
axis) about the x=0 reference point.

M0 =

∫ �

0
−x

dL

dx
dx = ρV 2

∞

∫ �

0
−x

d(Aα̃)

dx
dx = −ρV 2

∞ �A(�) α̃(�) + ρV 2
∞

∫ �

0
Aα̃ dx (6.76)

With zero base area and zero camber the lift is zero, and the pitching moment simplifies to

M = ρV 2
∞ α

∫ �

0
A dx = ρV 2

∞ V α (6.77)

about any reference point x location, where V =
∫ �
0A dx is the body’s volume. An important result is

dM/dα = ρV 2
∞ V > 0. An angle of attack change Δα will therefore produce a pitching moment change

ΔM of the same sign, which will tend to increase Δα even more. A body of revolution therefore exhibits an
inherent pitch instability, which must be stabilized using fins as on a blimp or submarine, or gyroscopically
via axial spin as on a finless projectile or a football thrown with a “spiral.”

The results above have also been obtained by Ashley and Landahl [50] who used complex mapping to
define the transverse flow. They also assumed a more general “finned” body of revolution with local span
b(x) whose cross-section is shown in Figure 6.12. The local z–doublet for this case can be given in terms of
an effective area A′,

κz(x) = 2V∞ A′ α̃ (6.78)

A′
(x) = π

[
R4

(b/2)2
+ (b/2)2 −R2

]
(6.79)

while the local lift relation (6.69) remains the same. The total lift and moment is therefore given by ex-
pressions (6.75) and (6.76) if the area A is replaced by the effective area A′ defined above. For the case
b/2 = R where the fins have zero width, we have A′ = A, and the finned-body results reduce to the circular
cross-section body results as expected.

R(  )x

(  )xb

Figure 6.12: Cross section of body of revolution with fins of local span b(x).



Aerodynamics of Aircraft in Maneuver 141

6.6.6 Limits of slender-body theory
The conclusion that a rear-pointed body generates no lift assumes strictly potential flow. In reality, slender
bodies will have some amount of flow separation if the rear taper is sufficiently rapid or if the local angle
of attack is sufficiently large. Fuselages with large rear upsweep angles exhibit such rear separation, and
slender delta wings at large angles of attack exhibit leading edge vortices. Figure 6.13 shows these flows,
and compares them with their strictly-potential flow versions. Although the slender-body approximations
and the 2D local far-field expansion (6.66) still remain reasonably valid with such separations, the strengths
Λ(x) and κz(x) will become significantly modified. In particular, the free vorticity which is antisymmetric in
y will significantly modify the doublet strength κz , as can be seen from its definition (2.83). It will therefore
modify the local and total lift, and also the moment. Specifically, the separation from the upswept rear body
produces a downward bias in the local lift contribution, while the leading edge vortices on a delta wing
significantly increase the upward lift, which is known as the vortex lift phenomenon. The effect is shown in
Figure 6.14 for delta wings of two different aspect ratios.

y

leading edge vortex

free vorticity ω

y

aft−body separation

vortex lift
L

L

Actual  Flow      Strictly
Potential Flow

z

z x
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U

U

Figure 6.13: Viscous separation from an upswept rear fuselage, and leading edge vortices on a delta
wing at high angle of attack. The free vorticity modifies the strictly-potential flow pattern, and also
modifies the 2D strengths Λ(x) and κz(x), and the associated aerodynamic loads.

6.6.7 Vortex lift models
Polhamus [51] has developed a method for estimating vortex lift based on the leading-edge suction concept.
In this formulation the leading edge suction force magnitude is obtained from the slender-body flow solution
for a flate plate, corresponding to the geometry in Figure 6.12 with R=0. This force is then applied normal
to the surface rather than tangential to the surface, which in effect rotates it by 90◦ about the leading edge
line. The equivalent formulation for general lifting surface geometries uses the leading edge suction force
defined by equation (6.23), but applied in the normal direction.

F′
sLE

=
π

4
ρC2 n̂ (at sharp leading edge) (6.80)

This rotation of the leading edge suction force from t̂ to n̂ models the boundary layer vorticity lifting off the
surface and forming a free vortex sheet above the surface, as sketched in Figure 6.13 on the bottom right.
The force rotation clearly increases the lift, and thus captures the vortex lift contribution. The lift increase
reported by Polhamus matches experimental data fairly well.
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The rotation of the leading edge suction force changes its direction from partly forward to partly aft, which
significantly increases the drag. This effect on drag was also examined by Polhamus [52], with the conclu-
sion that the added drag behaves much like induced drag from the added lift.
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Figure 6.14: Experimental CL(α) for two delta wings from Polhamus [51], compared to Vortex
Lattice Method calculations. Excess lift in the experiment at large angles of attack demonstrates the
effect of vortex lift resulting from the formation of leading edge vortices, which the standard VLM
does not capture. The effect is captured by Polhamus’s vortex lift model.
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Unsteady Aerodynamic Flows
This chapter will examine the general low-speed unsteady potential flow problem. Specifically, we will
revisit flow-field modeling in the unsteady case, and also the unsteady Bernoulli equation for the unsteady
pressure. The special case of unsteady airfoil flows will be examined in more detail.

7.1 Unsteady Flow-Field Representation
Chapter 2 defined the source density and vorticity as the divergence and curl of the velocity field.

σ = ∇ ·V
ω = ∇×V

These involve only spatial derivatives and hence apply instantaneously even if V is changing in time. Simi-
larly, representation of the velocity field via its source, vorticity, and boundary contributions

V(r,t) = Vσ + Vω + Vb

involves only spatial integrations, and likewise applies instantaneously. An unsteady flow can therefore be
represented in the same manner as a steady flow, but all the relevant quantities will now depend on time as
well as space.

Vσ(r,t) ≡ 1

4π

∫∫∫
σ(r′,t)

(r−r′)

| r−r′|3 dx′ dy′ dz′ (7.1)

Vω(r,t) ≡ 1

4π

∫∫∫
ω(r′,t)× (r−r′)

| r−r′|3 dx′ dy′ dz′ (7.2)

Vb = V∞ (observer moving steadily in airmass) (7.3)

Vb = 0 (observer fixed in airmass) (7.4)

We see that the unsteadiness of the velocity field is captured entirely by the time dependence of the source
and vorticity fields σ(r,t),ω(r,t). Furthermore, since the lumping process is strictly spatial, as in the steady
case the integrals above can be simplified using the lumped unsteady sheet strengths λ(s,�,t),γ(s,�,t), line
strengths Λ(�,t),Γ(�,t), or point strengths Σ(t). For free vorticity such as in trailing wakes, an alternative
approach is to move the vortex points rather than change the singularity strengths. In that case (7.2) is still
valid, but now the integration points r′ are functions of time.

In typical steady flow applications so far we have assumed that the body is fixed, so that the last boundary-
condition component Vb is the freestream velocity V∞. In unsteady flow applications it is often more
convenient to represent the body motion explicitly via its velocity U(t) and rotation rate Ω(t). In this case
we choose Vb = 0, and V then represents the “perturbation velocity,” which is what’s seen by an observer
stationary with respect to the airmass.
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7.2 Unsteady Potential Flow

The Helmholtz vorticity transport equation (1.95) dictates that aerodynamic flows have zero vorticity ev-
erywhere except in thin viscous layers adjacent to a solid body and in its trailing wakes. This conclusion
remains valid for unsteady flows.

ω ≡ ∇×V = 0 (outside viscous layers) (7.5)

Furthermore, the low-speed continuity equation is unchanged in the unsteady case,

σ ≡ ∇ ·V = 0 (7.6)

so that the velocity field still has zero divergence everywhere in the flow interior. The overall conclusion is
that the physical constraints on the vorticity and source distributions are the same in both steady and unsteady
low speed flows. The instantaneous velocity field outside the viscous layers (or the entire Equivalent Inviscid
Flow, introduced in Chapter 3) can still be represented by the perturbation potential ϕ(r,t).

V(r,t) = ∇ϕ (7.7)

If source sheets and doublet sheets are used as in most panel methods, then the unsteady potential can be
expressed explicitly via the usual superposition integrals, which now have unsteady sheet strength distribu-
tions.

ϕ(r,t) = ϕλ + ϕμ (7.8)

ϕλ(r,t) =
1

4π

∫∫
λ(s,�,t)

−1

| r−r′| ds d� (7.9)

ϕμ(r,t) =
1

4π

∫∫
μ(s,�,t)

n̂ · (r−r′)

| r−r′|3 ds d� (7.10)

7.3 Governing Equations for Unsteady Potential Flow

Figure 7.1 shows a rigid body moving through the fluid, seen in two different frames.
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Figure 7.1: Positions and velocities seen by an Earth-based observer, and by an onboard observer.



Unsteady Aerodynamic Flows 145

The body’s motion is defined by the velocity U(t) of some chosen reference point on the body, and by the
body’s rotation rate Ω(t). An arbitrary point P on the body has location rp relative to the reference point,
and Rp relative to the ground observer. This point’s velocity relative to the ground observer is then

Up =
dRp

dt
= U + Ω×rp (7.11)

which is the same as equation (6.3) considered earlier. The fluid velocity as seen by the ground observer is
∇ϕ as defined previously. The local fluid velocity seen in the local body frame at point r is then obtained by
subtracting the body frame’s local velocity.

Vrel(r,t) = ∇ϕ − (U+Ω×r) (7.12)

The field equation and boundary conditions for the perturbation potential ϕ(r,t) are

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
≡ ∇2ϕ = 0

Solid-body BC: Vrel · n̂ = 0

or equivalently: ∇ϕ · n̂ = (U+Ω×r) · n̂
Freestream BC: ϕ → 0

(7.13)

which must all instantaneously hold for each instant in time. The time dependence arises through the body
motion U(t) and Ω(t), and possibly also through atmospheric motion and body deformation as will be
described later.

7.3.1 Pressure calculation
Chapter 1 gave the derivation if the unsteady Bernoulli equation (1.105) for incompressible flow:

∂ϕ

∂t
+

1

2
V 2 +

p

ρ
+ gz = C (7.14)

Here we have V 2 = |∇ϕ|2, and we will also absorb the hydrostatic term gz into p/ρ, as described in
Section 1.9.3. The integration constant C can be evaluated at any point where the pressure and velocity are
known, such as at infinity where p = p∞, and where the fluid is at rest so that all ϕ derivatives vanish.

p +
1

2
ρ |∇ϕ|2 + ρ

∂ϕ

∂t
= p∞ (7.15)

It’s essential to note that (7.15) as written applies only in an inertial frame of reference, since it was ul-
timately derived from the momentum equation (1.86) for which we set f to be gravity, omitting any non-
inertial forces. This is why we chose V 2 = |∇ϕ|2, and not V 2 = |Vrel|2. Furthermore, the time derivative
∂ϕ/∂t must be performed at a spatial point which is inertial, meaning that this point is either stationary
(V∞ =0) or at most translating with uniform speed (V∞ �=0) relative to Earth. Specifically, the time deriva-
tive must not be performed at a point fixed on an accelerating or rotating body.

A practical complication here is that because the solution to the potential-flow problem as formulated above
is given in the body coordinates in the form ϕ(r,t), its explicit time derivative is at fixed r which is not an
inertial point. However, we require a time derivative at fixed R which is inertial. The distinction between
the time derivatives in the two frames is shown in Figure 7.2.
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Figure 7.2: Potential-field time variation at a point R fixed in the Earth frame, and another point r
fixed in the body frame. At the moment when the points coincide, the ϕ and ∇ϕ values in the two
frames are equal, but the time derivatives ∂ϕ/∂t are not.

To perform the frame conversion, we first note from Figure 7.1 that positions in the two frames are related
by the correspondence function R(r,t) which obeys

∂R

∂t

∣∣∣∣
r

= U + Ω×r

which can then be used to relate time derivatives in the two frames. Considering the potential to be in the
form ϕ(R(r,t),t), we obtain its time rate in the body frame via the chain rule,

ϕ̇ ≡ ∂ϕ

∂t

∣∣∣∣
r

=
∂ϕ

∂t

∣∣∣∣
R

+
∂ϕ

∂R

∣∣∣∣
t

· ∂R
∂t

∣∣∣∣
r

=
∂ϕ

∂t

∣∣∣∣
R

+ ∇ϕ · (U+Ω×r) (7.16)

where ∂ϕ/∂R is just a more intuitive way to write the spatial gradient ∇ϕ in this context. Relation (7.16)
then gives the potential’s time-rate in the Earth frame entirely in terms of quantities in the body frame.

∂ϕ

∂t

∣∣∣∣
R

= ϕ̇ − ∇ϕ · (U+Ω×r) (7.17)

The pressure can now be expressed using the unsteady Bernoulli equation (7.15) applied in the frame of the
Earth-based observer in Figure 7.2:

p(r,t) = p∞ − 1
2ρ |∇ϕ|

2 − ρ
∂ϕ

∂t

∣∣∣∣
R

(7.18)

p(r,t) = p∞ − 1
2ρ |∇ϕ|

2 + ρ∇ϕ · (U+Ω×r) − ρ ϕ̇ (7.19)

An equivalent alternative form is in terms of the body-relative velocity Vrel given by (7.12).

p(r,t) = p∞ + 1
2ρ |U+Ω×r |2 − 1

2ρ |Vrel|2 − ρ ϕ̇ (7.20)

It’s useful to note that in a steady flow situation we have

U = −V∞

Ω = 0

ϕ̇ = 0

in which case (7.20) reduces to the familiar steady Bernoulli equation.

p(r,t) = p∞ + 1
2ρV

2
∞ − 1

2ρ |Vrel|2
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7.4 Potential Jump of Unsteady Vortex Sheet

The physical zero pressure jump requirement across a vortex sheet was combined with the steady Bernoulli
equation in Section 5.4 to obtain the convection condition (5.15) for the potential jump. For the unsteady
case this needs to be re-examined because of the additional term in the unsteady Bernoulli equation (7.19).
We therefore consider an unsteady vortex sheet shown in Figure 7.3 which has separate potentials and
velocities on its upper and lower sides. The vortex sheet can represent either a thin lifting surface or a wake.

s

uϕ

lϕ

Vu = u

Δ

ϕ

V = Δ

l lϕ

Ω Ω r)− (U + 

Ω Ω r)− (U + 

Figure 7.3: Perturbation potential isolines and airfoil-frame velocities above and below an unsteady
vortex sheet, on the airfoil and on the wake.

As in the steady case, a thin unsteady wake has the same physical requirement of a zero static pressure jump
Δp ≡ pl − pu across it. Taking the difference of the unsteady pressure expression (7.20) between a lower
and upper point across the sheet, and setting the result to zero gives

Δp = 0 → 1
2 (Vu ·Vu − Vl ·Vl) + (ϕ̇u − ϕ̇l) = 0

1
2 (Vu +Vl) · (Vu −Vl) + (ϕ̇u − ϕ̇l) = 0

Va · ∇̃(Δϕ) + ˙(Δϕ) = 0 (7.21)

where Vu,Vl are the upper and lower Vrel velocities, Va is the average sheet velocity

Va = 1
2 (Vu +Vl)

and ∇̃() is the surface gradient within the sheet. Note that (7.21) reduces to the earlier steady-flow potential
jump result (5.15) if we set ˙(Δϕ) = 0.

7.4.1 Potential-jump convection
The unsteady wake zero pressure jump condition (7.21) can be rewritten as a substantial derivative.

∂(Δϕ)

∂t
+ Va · ∇̃(Δϕ) = 0

or
D(Δϕ)

Dt
= 0 (on wake) (7.22)

Equation (7.22) implies that the wake potential jump Δϕ(s,�,t) ≡ ϕu−ϕl , set initially at the trailing edge by
the Kutta condition, convects unchanged at the sheet velocity Va, as sketched in Figure 7.4.

7.4.2 Shed vorticity
From Figure 7.3 we see that the wake sheet has a tangential velocity jump Vu−Vl = ∇̃(Δϕ), which
corresponds to a vortex sheet of the following strength.

γ = n̂× (Vu−Vl) = n̂× ∇̃(Δϕ) (7.23)
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Figure 7.4: Potential jump Δϕ across a wake convects without change at the average sheet velocity.
If the flow is unsteady, the resulting streamwise gradients in Δϕ imply the presence of shed vorticity
perpendicular to Va.

The trailing vorticity is the streamwise component of this γ vector, and the shed vorticity is the transverse
component. Choosing the s coordinate to be parallel to Va,

ŝ ≡ Va

|Va|
(7.24)

gives the following explicit definitions of the trailing and shed vorticity components.

γtrail ≡ ŝ · γ (7.25)

γshed ≡ (ŝ×γ) · n̂ = ŝ · ∇̃(Δϕ) =
∂Δϕ

∂s
(7.26)

Comparing equation (7.26) with (7.21) together with the ŝ definition shows that γshed can be alternatively
given by the time rate of Δϕ.

γshed = −
˙(Δϕ)

|Va|

{
= 0 , steady flow
�= 0 , unsteady flow

(7.27)

Shed vorticity is therefore present only in unsteady flows, and is a major complication in the formulation of
unsteady potential flow calculation methods.

7.5 Unsteady Flow Categories
As derived above, unsteady potential flow introduces three basic new effects not present in steady flow:
unsteady ∇ϕ · n̂ due to body motion U(t),Ω(t), the additional ρ ∂ϕ/∂t term in the Bernoulli equation for
the pressure, and the generation of shed vorticity γshed. Only some of these effects may be important in any
given situation, giving a natural categorization of unsteady flows summarized in Table 7.1.

Table 7.1: Unsteady flow regimes and retained or discarded effects

∂(∇ϕ · n̂)/∂t ρ ∂ϕ/∂t γshed

Steady 0 0 0

Quasi-steady I
√

neglected neglected

Quasi-steady II
√

neglected estimated

Unsteady
√ √ √

The quasi-steady approximation is employed for defining the aerodynamic loads in flight in Chapter 6,
where the unsteady forces on a maneuvering aircraft are assumed to be the same as those in steady flight at
the same instantaneous flight condition defined by the parameters α, β, p̄, q̄, r̄. In the “Quasi-steady II” case
a slight refinement is made by estimating the shed vorticity effects via the additional ¯̇α parameter.
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7.6 Unsteady Panel Method

Standard panel methods which solve the steady potential flow problem can be extended to the unsteady case.
The source+doublet panel method will be used here to illustrate these necessary modifications.

7.6.1 Sources of unsteadiness
Figure 7.5 shows the possible origins of flow unsteadiness in an aerodynamic flow which must be captured
by any general unsteady flow solution method. These are further described below.
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Figure 7.5: Typical sources of unsteadiness in an aerodynamic flow are unsteady body motion
U(t),Ω(t), unsteady body deformation n̂(t), ṙ(t), and a spatially-varying or unsteady atmospheric
velocity field Vgust(R,t).

Body motion

One possible source of unsteadiness is unsteady rigid-body motion. This is defined by the specified velocity
and rotation rate U(t) and Ω(t) introduced in the body-point velocity definition (7.11).

Gust field

Unsteady flow can also be caused by a nonuniform atmospheric motion or “gust” velocity field Vgust(R,t)

which is specified. The instantaneous Earth position of any body point r on the aircraft is

R(r,t) = Ro(t) + r

where Ro is obtained by integrating U in time, as described in Chapter 9. The gust velocity at the body
point r is then

Vgust(r,t) = Vgust(R(r,t),t)

where Earth/body axis conversions using the body Euler angles would be used, as described in Section 9.4.
These are obtained by integration of the aircraft rotation rate Ω(t). In reality, any such gust field will be
modified by the presence of the body, but for the typical gust field which has long variations relative to the
body size this effect will be small and is generally neglected. This is consistent with classical thin airfoil
approximations.

Body deformation

The third cause of flow unsteadiness is a time-dependent body geometry with local velocity ṙ, such as an
oscillating flap or a flapping wing. If the deformation of the motion is small, its effects can be approximated
by holding the geometry fixed, but still using the actual surface velocity ṙ and normal vectors n̂ when
forming the flow-tangency condition.
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7.6.2 Wake convection
A major complication in calculation of unsteady flows is the evolution of the wake, both its doublet strength
as well as its geometry. The physically correct wake shape is the streakline (in 2D) or streaksurface (in 3D)
attached to the trailing edge. An example is shown in Figure 7.6 for a heaving airfoil. In the most physically
accurate free wake case the wake shape’s evolution in time depends on the history of the velocity field of the
airfoil+wake combination, and hence depends on the flow solution itself. This renders the problem nonlinear,
since the kernel functions for the wake doublet sheet, in particular the r′ values in the ϕμ integral (7.10),
will now depend on the solution.

Airfoil Motion  (TE point path shown)

Prescribed Wake,  straight  (linear flow problem)

Prescribed Wake,  along TE path  (linear flow problem)

Free Wake  (nonlinear flow problem)
wake rollup

Figure 7.6: Three different wake geometry models. In free wake model, spanwise wake roll-up
typically occurs at locations of strong shed vorticity.

A further complication is that a free vortex sheet will in general undergo roll-up wherever the vorticity is
concentrated. Steady flow problems which only have trailing vorticity typically have wake roll-up at the
wake sheet’s wingtip edges, as sketched in Figure 5.4. Unsteady flow problems in addition also have roll-up
caused by shed vorticity. The extreme deformation of the wake shape undergoing roll-up makes accurate
tracking of this shape difficult and computationally expensive.

These complications associated with a free wake can be mostly eliminated by using the prescribed-wake as-
sumption. Here the convection of the wake by the velocity field is ignored, and instead the wake geometry is
prescribed explicitly. Two possible choices are shown in Figure 7.6. The simplest straight-wake assumption
is quite adequate for modest airfoil motions, and is almost invariably used by Vortex-Lattice methods. The
great advantage of a prescribed wake is that it renders the potential flow problem linear, since the kernel
functions then become independent of the flow solution. Unless the rolled-up wake closely interacts with a
downstream surface, the neglect of roll-up generally results in very minor errors in a potential flow solution.

7.6.3 Panel method formulation
Figure 7.7 shows the velocity field relative to the body, both on the exterior and the interior. These are
defined as

V(r,t) = −U−Ω×r − ṙ + Vgust + ∇ϕ (physical exterior velocity) (7.28)

Vint(r,t) = −U−Ω×r − ṙ + Vgust (nonphysical interior velocity) (7.29)

where only ∇ϕ is unknown a priori. The physical flow-tangency requirement on the exterior is

V · n̂ = 0 (7.30)

so that the source sheet strength is

λ ≡ (V −Vint) · n̂ = −Vint · n̂ (7.31)
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which is known and thus can be explicitly specified for each point on the body surface.

If we now specify a zero interior potential, ϕint = 0, the doublet sheet strength then becomes the physical
external perturbation potential ϕ, while on the wake it represents the physical jump Δϕ.

μ ≡ ϕ − ϕint = ϕ (7.32)

μw = Δϕ (7.33)
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Figure 7.7: Body-relative exterior and interior velocities represented by body motion, gust field, and
surface source and doublet sheets, shown in top figure. Panel discretization of the sheet strengths is
shown in the bottom figure.

The zero interior potential is imposed via Green’s identity

ϕint = −1

2
μ +

1

4π

∫∫
μ∇

(
1

r

)
·n̂ dS +

1

4π

∫∫
λ
−1

r
dS +

1

4π

∫∫
μw ∇

(
1

r

)
·n̂ dSw = 0 (7.34)

which after evaluation on the paneled geometry becomes the following matrix equation for the unknown
surface-panel doublet strengths μj .

Aij μj = −Aw
ij μwj

− Bijλj (7.35)

The trailing edge wake panel strength at each spanwise location is an unknown, but is related to the two top
and bottom surface strengths at the trailing edge at that same location.

μwTE
= (μjTE)u + (μjTE)l (7.36)

This is equivalent to a Kutta condition.

The unsteady solution proceeds in a sequence of time steps, with the following operations performed at each
time step:

1. Set the source panel strengths λj from the known Vint(r,t).

2. Set all the wake-panel doublet strengths μwj
from the previous time step, by convecting μw without

change along Va, according to the zero wake-load condition.

Dμw

Dt
= 0

A common approximation made here is to assume

Va 	 −(U + Ω×r)

which is computationally simpler and much less expensive to evaluate.
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3. Evaluate the righthand side in (7.35) using the known λj and μwj

4. Solve linear system (7.35) for μj , using the same LU-factored Aij matrix for all time steps.

5. Using μj, μwj
, λj , evaluate ϕ̇, ∇ϕ, V on surface, compute pressure and airloads.

For a much more detailed description of the necessary calculations see Katz and Plotkin [4].

The 3D unsteady panel method described above is quite general, but provides little insight into unsteady
flow behavior except via numerical experimentation. Hence we will next consider simplified models of
several specific unsteady flows of interest. Suitable approximations will be used as needed to obtain more
concise semi-analytical results for unsteady aerodynamic forces and moments.

7.7 Unsteady 2D Airfoil

The unsteady 2D airfoil problem is important in many applications, such as prediction of gust loads on
wings, cyclic loads on rotor blades, and the onset of flutter. See Bisplinghoff et al [53] for an overview.
Here we will consider the case of a rigid airfoil moving at a uniform horizontal speed U , while undergoing
unsteady heaving h(t) and pitching θ(t) displacements about a baseline position and angle of attack α0, as
shown in Figure 7.8. Note that the heave displacement h is defined positive down.
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Figure 7.8: Airfoil moving at uniform horizontal baseline velocity U . Heave and pitch displace-
ments h(t), θ(t) from baseline position give net resultant vertical velocity ḣ+ θ̇x at a some point x,
which then define the local angle of attack α(x,t). Some vertical gust velocity wgust(t) produces an
additional angle of attack αgust.

7.7.1 Geometric relations
The assumptions of first-order thin airfoil theory will be employed here. The airfoil camberline shape is
Z(x), with a negligibly small thickness. The geometric and flow angles are assumed to be small.

Z ′ � 1 , α0 , θ � 1 , ḣ , θ̇c , wgust � U

Following historical convention for unsteady airfoil analysis, the airfoil extends over −c/2 ≤ x ≤ c/2, so
the reference point x=0 is at midchord, as shown in Figure 7.8.

7.7.2 Problem formulation
The problem will be formulated in the frame and the axes of the inertial Earth-based observer. The camber-
line’s normal vector therefore rotates with the airfoil.

n(x,t) =
(
α0 + θ − Z ′

)
x̂ + ẑ (7.37)
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The small-angle assumptions give the following total velocity of a point on the airfoil.

Up(x,t) = −U x̂− (ḣ+ θ̇x)ẑ (7.38)

The perturbation velocity field is represented by a vortex sheet of strength γ(x) on the airfoil and wake.
The wake portion is absent in steady thin airfoil theory (Appendix D), but is needed here to represent shed
vorticity. In the Earth frame, the total vortex sheet strength gives the following instantaneous vertical fluid
velocity w at any given location on the x-axis, which adds to any wgust already present.

w(x,t) =
1

2π

∫
∞

−c/2
−γ(x′,t)

dx′

x− x′
(7.39)

In the airfoil frame, the corresponding fluid velocity at location x is then

Vrel = (w + wgust) ẑ − Up = U x̂ +
(
ḣ+ θ̇x+ w + wgust

)
ẑ (7.40)

which is then used in the usual flow tangency condition on the camberline.

Vrel · n = 0 (−c/2 ≤ x ≤ c/2 ) (7.41)

This applies only on the airfoil. In the wake, we must instead impose the zero pressure jump condition, by
taking the x-derivative of the Δϕ convection equation (7.22), which then becomes the γ convection equation.
The governing equations over the entire vortex sheet −c/2 ≤ x < ∞ are then stated as follows.

1

2π

∫
∞

−c/2
γ(x′,t)

dx′

x−x′
= Uα0 − UZ ′ + ḣ + (Uθ + θ̇x) + wgust (−c/2 ≤ x ≤ c/2 ) (7.42)

∂γ

∂t
+ U

∂γ

∂x
= 0 ( c/2 ≤ x < ∞ ) (7.43)

The pressure loading required to calculate the lift and moment is obtained from equation (7.21). This in turn
requires the time rate of the potential jump, which is defined in terms of the vortex sheet strength time rate.

Δp(x,t) = ρ ˙(Δϕ) + ρUγ (7.44)

˙(Δϕ)(x,t) =

∫ x

−c/2
γ̇(x′,t) dx′ (7.45)

Because equations (7.42) and (7.43) are both linear in γ, their solution γ(x,t) and corresponding Δϕ(x,t) and
Δp(x,t) can be decomposed into five independent components, with each component determined entirely by
one of the five righthand side source terms in (7.42).

γ(x,t) = γα(x) + γZ (x) + γh(x,t) + γθ(x,t) + γgust(x,t) (7.46)

The first two contributions γα, γZ are steady since they depend only on the fixed baseline angle of attack α0

and camberline shape Z(x), respectively. These are treated by standard steady first-order thin airfoil theory,
as derived in Appendix D. This result for the steady case is

c� = c�0 + 2πα0

cmc/4
= cm0

}
(steady baseline)

where c�0 and cm0 depend only on the camberline shape. In the subsequent sections we will ignore these
steady contributions and focus only on the three remaining unsteady parts driven by h(t), θ(t), wgust(t) which
determine γh, γθ, γgust, respectively, and also their corresponding unsteady lift and moment.
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7.7.3 Canonical impulse solutions
A solution to equations (7.42) and (7.43) have been obtained by Wagner [54] based on a unit step in ḣ, θ, θ̇
corresponding to a sudden change of airfoil motion in heave rate, pitch, and pitch rate. Küssner [55] obtained
a solution for the case of a unit step of wgust, corresponding to the airfoil flying into a uniform vertical gust
field with a sharp boundary.

In the Wagner case an important quantity is the angle of attack relative to the camber line at the 3
4 -chord

location, or x = c/4.

α3c/4 =
ḣ

U
+ θ +

θ̇c

4U
(7.47)

In the Küssner case the relevant quantity is the apparent angle of attack resulting from the vertical gust
velocity shown in Figure 7.8, which is assumed to act everywhere on the chord.

αgust =
wgust

U
(7.48)

If these quantities have step jumps of Δα3c/4 and/or Δαgust at t=0, then the lift is

L′

1
2ρU

2c
≡ c�(t̄) = c�Q + c�A (7.49)

c�Q(t̄) = 2πΔα3c/4 Φ(t̄) + 2πΔαgust Ψ(t̄) (7.50)

c�A(t̄) = 2π

[
1

2

Δḣ

U
+

1

2
Δθ

]
δ(t̄) (7.51)

t̄ ≡ U t

c/2
(7.52)

where Φ(t̄) is the Wagner function, Ψ(t̄) is the Küssner function, and δ(t̄) is the unit impulse function. Their
argument t̄ is a non-dimensionalized time, which can also be interpreted as the distance that the airfoil has
moved, in units of half-chord.

The lift is seen to be the sum of two parts:

1) c�Q is the “quasi-steady” or “circulatory” part associated with vorticity shedding and circulation, and
evolves in time according to the Wagner and Küssner functions shown in Figure 7.9.

2) c�A is an “apparent-mass” or “impulsive” part associated with the instantaneous acceleration of the fluid
immediately adjacent to the airfoil. A step change in velocity or angle produces an infinite acceleration,
resulting in the impulsive lift.

Both the Wagner and Küssner functions asymptote to unity in the limit t → ∞. Therefore, the general
solution (7.50) asymptotes to the value c�∞ = 2π(Δα3c/4 + Δαgust), as expected from steady thin airfoil
theory.

The exact Wagner and Küssner functions cannot be expressed in terms of elementary functions, but are
available in tabulated form. For calculations, the following curve-fit expressions are fairly accurate and
convenient.

Φ(t̄) = 1 − 0.165 exp(−0.045t̄ ) − 0.335 exp(−0.3t̄ ) (7.53)

Ψ(t̄) = 1 − 0.5 exp(−0.13t̄ ) − 0.5 exp(−1.0t̄ ) (7.54)
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Figure 7.9: Circulatory part of lift coefficient versus time for a step increase in α3c/4 due to airfoil
motion (Wagner solution), and a step increase in αgust due to a gust velocity (Küssner solution).
Total lift for the airfoil motion case contains an additional impulsive component, not shown.

7.7.4 General motion solution
The airfoil lift for a general motion can be obtained by Duhamel’s (convolution) integral, which is a super-
position of the infinitesimal step solutions over the motion history.

c�Q (t̄) = 2π α3c/4(0) Φ(t̄) + 2π

∫ t̄

0+

dα3c/4

dt̄′
Φ(t̄−t̄′) dt̄′

+ 2π αgust(0) Ψ(t̄) + 2π

∫ t̄

0+

dαgust

dt̄′
Ψ(t̄−t̄′) dt̄′ (7.55)

c�A (t̄) = 2π

[
c

4

ḧ

U2
+

c

4

θ̇

U

]
(7.56)

The inputs are the airfoil motion given by h(t) and θ(t), and the atmospheric gust motion given by wgust(t).
These quantities define α3c/4(t) and αgust(t) which are then used in the convolution integrals for c�Q above,
and are also used directly for c�A .

7.7.5 Apparent mass
It is useful to note that the dimensional lift/span corresponding to c�A given by (7.56) is

L′
A = 1

2ρU
2 c c�A = m′

A (ḧ+ Uθ̇) (7.57)

m′
A ≡ ρ π(c/2)2 (7.58)

where m′
A is the apparent mass (per unit span), which is the mass of a unit-span cylinder of fluid whose

diameter is airfoil chord. Hence, subjecting an airfoil to a normal acceleration results in an additional
reaction force as though this cylindrical mass of the air was attached to the airfoil and also accelerated. The
effective normal acceleration, in addition to ḧ, also includes a Coriolis-like term Uθ̇ due to airfoil rotation.

7.7.6 Sinusoidal motion solution
Theodorsen [56] derived solutions for the case of small-magnitude sinusoidal motion at some frequency ω,
specifically for use in predicting wing flutter. This situation is most conveniently treated by the introduction
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of complex variables,

h(t) = h0 cos(ωt+ ϕh) = Re
{
h̄ eiωt

}
; h̄ = h0 e

iϕh (7.59)

θ(t) = θ0 cos(ωt+ ϕθ) = Re
{
θ̄ eiωt

}
; θ̄ = θ0 e

iϕθ (7.60)

where the convenient complex amplitudes h̄, θ̄ incorporate both the heave and pitch amplitudes h0, θ0, and
also the heave and pitch phase angles ϕh, ϕθ . The notation Re{ } denotes the real part of a complex quantity.

Substitution of the sinusoidal h(t) and θ(t) expressions above into the general-motion Wagner solutions (7.55)
and (7.56), gives the following solution for the lift coefficient, again as a sum of quasi-steady and apparent-
mass contributions. The pitching moment coefficient can also be obtained.

L′

1
2ρU

2c
≡ c� = Re

{
C(k) c�Q + c�A

}
(7.61)

c�Q = 2π

[
θ +

ḣ

U
+

c

4

θ̇

U

]
= 2π

[
θ̄ + ik

2h̄

c
+ ik

θ̄

2

]
eiωt = 2π α3c/4 (7.62)

c�A = 2π

[
c

4

θ̇

U
+

c

4

ḧ

U2

]
= 2π

[
ik
θ̄

2
− k2

h̄

c

]
eiωt (7.63)

M ′

1
2ρU

2c2
≡ cmc/2

= Re
{
C(k) cmQ

+ cmA

}
(7.64)

cmQ
=

1

4
c�Q (7.65)

cmA
= 2π

[
− c

16

θ̇

U
− c2

128

θ̈

U2

]
= 2π

[
− ik

θ̄

8
+ k2

θ̄

32

]
eiωt (7.66)

k ≡ ωc

2U
= π

chord
distance traveled in one period

(7.67)

The dimensionless parameter k which appears in this Theodorsen solution is the reduced frequency, which
was previously mentioned in Section 1.5.3. It affects the strength of the shed vorticity, and also is a measure
of the relative importance of the ϕ̇ term in the unsteady Bernoulli equation (7.19). The other relevant
parameters which appear are the maximum heave/chord ratio h0/c, the maximum pitch displacement θ0,
and the relative phase ϕh− ϕθ between the heave and pitch motions.

For finite values of k, the circulatory parts of the lift and moment in (7.61) and (7.64) are modified by
the Theodorsen Lag Function C(k) factor. This is a complex quantity, and is explicitly defined in terms of
standard and modified Bessel functions J0, J1 and Y0, Y1, respectively.

H0(k) = J0(k) − iY0(k) , H1(k) = J1(k) − iY1(k)

C(k) =
H1(k)

H1(k)+ iH0(k)
(7.68)

Its real and imaginary components and its magnitude and phase angle are plotted in Figure 7.10.

In the quasi-steady limit k→0 the lag function becomes unity, C(0) = 1+0i, and also all the time-rate terms
in the unsteady lift and moment expressions become negligible. The resulting lift and moment coefficients
then reduce to c�=2πα , cmc/2

=c�/4, which matches thin airfoil theory.

For k>0 we have |C(k)|<1 and ∠C(k)<0, so the lift contribution of c�Q will now be reduced in magnitude
and will also have a phase lag. The main origin of these effects is the convection of shed vorticity into the
wake. This contributes a vertical velocity w at the airfoil which tends to oppose the current angle of attack,
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and thus reduces the lift magnitude. But this vertical velocity contribution is delayed by the vorticity’s
convection time into the wake, which results in the phase lag.

As in the general-motion result (7.56), the remaining c�A and cmA
“apparent-mass” parts act instantaneously.

Because of their extra time derivatives these introduce phase leads into the lift and moment, but become
significant only at larger k values. Figure 7.11 shows the relative magnitudes of these various contributions
to the lift for sinusoidally-heaving airfoils at two different reduced frequencies.
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Figure 7.10: Real and imaginary parts, and magnitude and phase of the Theodorsen lag function.
Magnitude and phase lag values at k = 0.1 and k = 0.5 are used in the example in Figure 7.11.
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Figure 7.11: Unsteady lift coefficient components of airfoils undergoing sinusoidal heaving at
zero pitch angle. Only the physical (real) parts are shown. The two airfoils have the same
heave amplitude and wavelength, but different chords and hence different reduced frequencies
k = π×chord/wavelength. The quasi-steady lift c�Q = 2πα3c/4 is lagged and reduced in magnitude
by the C(k) Theodorsen function associated with shed vorticity. The impulsive lift contribution c�A
is the inertial reaction of the fluid’s apparent mass subjected to vertical acceleration, and leads the
quasi-steady lift by 90◦.





Chapter 8

Compressible Aerodynamic Flows
This chapter will examine the aerodynamics of airfoils, wings, and bodies in compressible flow. Modeling
techniques, approximations, and associated solution methods will also be examined, particularly for the
important class of small-disturbance flows. Subsonic, transonic, and supersonic flows will be addressed.

8.1 Effects of Compressibility

8.1.1 Compressibility definition
A compressible flow is defined as one with significant density ρ variations along particle pathlines. The
resulting complications for flow-field representation were briefly discussed in Chapter 2. To summarize, a
compressible flow has a nonzero field source distribution σ(r), which can be related to the density-gradient
and velocity fields via the continuity equation and the isentropic density-speed relation.

σ(r) ≡ ∇ ·V = −1

ρ
∇ρ ·V =

1

2

∇(V 2) ·V
a2

= M2 ∂V

∂s
�= 0 (8.1)

This field source must be accounted for if source+vorticity superposition is employed to represent the ve-
locity field. However, because this σ(r) is typically extensive, it cannot be effectively lumped into source
sheets, lines, or points, so that actually performing the velocity superposition calculation numerically, or
constructing its AIC matrices, becomes impractical for the general case, especially in 3D. Resorting to CFD
methods which used grid-based flow-field representation then becomes necessary.

One exception is the case of small-disturbance flows, for which the field source distribution can be approx-
imately accounted for via the Prandtl-Glauert coordinate transformation. The superposition approach then
becomes effective again for such compressible flows. These will be treated later in this chapter.

8.1.2 Flow-field changes
The field source distribution in a typical compressible flow-field over a 2D airfoil is shown in Figure 8.1.
The acceleration over the front half of the airfoil produces a positive source area, while the deceleration over
the rear half produces a negative source (sink) area. This has two major effects:

1. Increase in the overall velocity over the airfoil, as sketched on the left in Figure 8.2, and also quanti-
tatively plotted in Figure 8.3.

2. Relative to the streamtubes of the incompressible case where σ = 0, the compressible case shows a
divergence of the streamtubes in the front where σ > 0, and a convergence of the streamtubes in the
rear where σ < 0. This results in a thickening of the streamtubes over most of the airfoil, which is
quantitatively shown in Figure 8.4.
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3. Since the airfoil surface is fixed, the streamtubes can only thicken outward, which results in a lateral
dilation of the overall velocity and pressure field isolines, which is quantitatively shown in Figure 8.5.

Figure 8.1: Contours of constant σ(r) c/V∞ with increment 0.1, near NACA N66-010 airfoil at
α= 0◦, M∞ = 0.77. Region over most of airfoil’s front half has σ > 0 (sources), and region over
rear half has σ<0 (sinks).

Figure 8.2: Comparison of velocity vectors and streamlines between incompressible (dashed) and
compressible (solid) flows. Source and sink regions in the compressible case increase the velocity
adjacent to the airfoil (left), and also cause streamtube thickening (right).

8.1.3 Transonic flow and shock waves
In flows with a subsonic freestream, or M∞ < 1, the maximum local Mach number can become supersonic,
or M > 1. Such a flow with both subsonic and supersonic regions present is called a transonic flow. An
example is shown in Figure 8.6. Transonic flows will be treated in more detail later in this chapter.

8.1.4 Flow-field representation
As mentioned above, the presence of field sources creates difficulties for a calculation method using the
freestream+source+vorticity superposition to represent the flow. Consider a non-lifting case which can be
represented by fictitious source sheets λ(s,�) to represent the airfoil, and a source density σ(r) as defined
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Figure 8.3: Comparison of surface speed distributions V (x) on NACA N66-010 airfoil at α=0◦ at
M∞ = 0 and M∞ = 0.77. Field sources and sinks increase the speed over most of the airfoil, and
decrease the speed ahead and behind the airfoil.
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Figure 8.4: Comparison of computed streamlines at M∞ =0 and M∞ =0.77, above NACA N66-
010 airfoil at α=0◦. Vertical scale is exaggerated 4×, clearly showing the streamtube thickening
effect in the compressible case.

by (8.1) above to represent the field sources. The overall velocity field is then given as follows.

V(r) = V∞ +
1

4π

∫∫
λ(s′,�′)

(r−r′)

| r−r′|3 ds′ d�′ +
1

4π

∫∫∫
1

2

∇(V 2) ·V
a2

(r−r′)

| r−r′|3 dx′ dy′ dz′ (8.2)

One difficulty is due to the integrand in the second superposition integral in (8.2) being nonlinear, since
V 2 and a2 both depend on the local V(r′). This is a relatively minor complication which could be handled
with a suitable iterative solution method. The real difficulty arises from this being a volume integral, which
requires a space-filling grid to enable its numerical evaluation. Such a method would then offer no advantage
in the number of flow unknowns over a method which uses a grid-based flow-field representation approach.
Furthermore, each unknown field source directly influences all field points, so the associated AIC matrix is
large, dense, and would be dramatically expensive to solve. In contrast, in a grid-based method each flow
unknown influences only its few grid neighbors, so the AIC matrices of grid methods are always very sparse
and thus more economical to solve.
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Figure 8.5: Contours of constant V(r)/V∞ with increment 0.02, over NACA N66-010 airfoil at
α=0◦, for M∞=0 (left) and M∞ =0.77 (right). High speed flow on right exhibits lateral dilation
of the flow pattern due to streamtube thickening.
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Figure 8.6: Surface and contour V(r)/V∞ distributions in transonic flow over NACA N66-010 airfoil
at α=0◦, M∞=0.81. Local M > 1 region ends in a normal shock wave.

8.2 Compressible Flow Quantities

The various thermodynamic definitions and relations derived in Chapter 1 will now be recast into forms
suitable for compressible aerodynamic analysis.

8.2.1 Stagnation quantities
The stagnation enthalpy or equivalently the total enthalpy, which was defined and treated in Chapter 1, is
constant in an adiabatic flow and is therefore equal to its freestream value.

ho ≡ h +
V 2

2
=

a2

γ−1 +
V 2

2
= h

(
1 +

γ−1
2

M2

)
(8.3)

ho = ho∞ =
a2∞
γ−1 +

V 2
∞

2
= h∞

(
1 +

γ−1
2

M2
∞

)
(8.4)
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In (8.4) the freestream quantities have been used to define the constant ho value. The stagnation enthalpy
(8.3) together with the isentropic relations (1.69) define the stagnation density and pressure.

ρo = ρ

(
ho
h

)1/(γ−1)

= ρ

(
1 +

γ−1
2

M2

)1/(γ−1)

(8.5)

po = p

(
ho
h

)γ/(γ−1)

= p

(
1 +

γ−1
2

M2

)γ/(γ−1)

(8.6)

These must also be constant and equal to their freestream values, but only in isentropic regions of the flow.

The known freestream total enthalpy in (8.3) also gives convenient alternative expressions for the local speed
of sound and Mach number in terms of their freestream values and the local normalized speed V/V∞.

a2 = a2∞

(
1 + γ−1

2 M2
∞

[
1− (V/V∞)2

])
(8.7)

M2 = M2
∞

(V/V∞)2

1 + γ−1
2 M2

∞ [1− (V/V∞)2]
(8.8)

8.2.2 Isentropic static density and pressure
Wherever ρo and po are equal to the known freestream values, i.e. in isentropic regions of the flow, there we
can express the static density and pressure only in terms of the Mach number or the velocity.

ρ

ρ∞

=

[
1 + γ−1

2 M2
∞

1 + γ−1
2 M2

]1/(γ−1)
=

[
1 +

γ−1
2

M2
∞

(
1− V 2

V 2
∞

)]1/(γ−1)
(8.9)

p

p∞

=

[
1 + γ−1

2 M2
∞

1 + γ−1
2 M2

]γ/(γ−1)
=

[
1 +

γ−1
2

M2
∞

(
1− V 2

V 2
∞

)]γ/(γ−1)
(8.10)

Since external aerodynamic analyses frequently employ the velocity potential, the velocity forms above will
be the more useful ones here. Note that relation (8.10) is the same as the steady version of the compressible
Bernoulli equation (1.112).

The definition of the pressure coefficient remains unchanged from the incompressible case, but its depen-
dence on the Mach number or velocity is now different.

Cp ≡ p− p∞

1
2ρ∞V 2

∞

=
2

γM2
∞

(
p

p∞

− 1

)

=
2

γM2
∞

⎧⎨⎩
[
1 + γ−1

2 M2
∞

1 + γ−1
2 M2

]γ/(γ−1)
− 1

⎫⎬⎭ (8.11)

Cp =
2

γM2
∞

{[
1 +

γ−1
2

M2
∞

(
1 − V 2

V 2
∞

)]γ/(γ−1)
− 1

}
(8.12)

8.3 Shock Waves and Wave Drag
The normal shock wave shown in Figure 8.6 will typically result in shock losses and associated wave drag
which are important in transonic flows. From conservation of mass, momentum, and total enthalpy across a
normal shock wave, the total pressure ratio across the shock is calculated to be

po2
po1

=

(
(γ+1)M2

1

2 + (γ−1)M2
1

)γ/(γ−1)(
γ + 1

1− γ + 2γM2
1

)1/(γ−1)
	 1 − γ (M1−1)3

1 + 2γ (M1−1)
(8.13)
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where M1 and po1 are just upstream of the shock, and po2 is just downstream. This ratio is plotted in
Figure 8.7. The second approximate form in (8.13) is based on an asymptotic analysis of the exact form
for M1 → 1. It shows that the total pressure loss is cubic in M1−1, with the “knee” roughly at M1	 1.15
beyond which the loss increases rapidly.
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Figure 8.7: Total pressure ratio across a normal shock wave with γ=1.4.

The streamlines passing through the shock suffer a reduction in total pressure, from po1 = po∞ down to
po2 = powake which persists downstream, as shown in Figure 8.8. When they reach ambient pressure p∞

downstream, they will therefore have a velocity below freestream Vwake < V∞, and thus form a shock wake.
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Figure 8.8: Total pressure drop across a normal shock on the airfoil results in a shock wake down-
stream. The shock wake’s momentum defect is the wave drag.

To quantify the magnitude of this shock wake defect we first write the total pressure in terms of the static
pressure and the velocity.

po ≡ p

(
1 +

γ−1
2

M2

)γ/(γ−1)
= p

(
1 +

γ−1
2

M2
∞

)γ/(γ−1) [
1 +

γ−1
2

M2
∞

(
1−V 2

V 2
∞

)]−γ/(γ−1)

(8.14)

Applying this to the shock wake we set p = p∞ and po = powake = po∞(po2/po1), which then gives the
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shock-wake velocity for any given streamline.

powake = po∞(po2/po1) = p∞

(
1 +

γ−1
2

M2
∞

)γ/(γ−1) [
1 +

γ−1
2

M2
∞

(
1− V 2

wake

V 2
∞

)]−γ/(γ−1)

(8.15)

Vwake
V∞

=

{
1 − 2

(γ−1)M2
∞

[(
po2
po1

)−(γ−1)/γ

− 1

]}1/2

(8.16)

Vwake
V∞

	 1 − 1

M2
∞

(M1−1)3

1 + 2γ (M1−1)
(8.17)

Here M1 is the shock-wave Mach number which that streamline had just before passing though the shock,
as shown in Figure 8.8. The final simplified form (8.17) assumes 1−Vwake/V∞ � 1 which holds for any
practical transonic flow. This wake velocity ratio is plotted in Figure 8.9 for two freestream Mach numbers.
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Figure 8.9: Wake velocity versus shock-wave Mach number M1 for that streamline.

Total section drag/span is the total momentum defect of the wake shown in Figure 8.8. The wave drag is
the part corresponding to the mass flow which passed through the shock, with the remainder being the usual
viscous defect.

D′ = D′
viscous + D′

wave (8.18)

D′
wave =

∫
(V∞ − Vwake) dṁshock

	
∫

(V∞ − Vwake) ρ∞V∞ dz (8.19)

cdwave ≡ D′
wave

1
2ρ∞V 2

∞ c
	 2

∫ (
1− Vwake

V∞

)
dz

c
(8.20)

The approximations above assume that the wake defect is small compared to unity, which is quite reasonable.

Since typical transonic airfoils have cd 	 0.01 or less, and the shock height and corresponding shock wake
height is a significant fraction of the chord length, it is clear that the fractional defect 1− Vwake/V∞ must be
kept well below roughly 0.01 to keep cdwave from adding significantly to the total drag. Hence, a relatively
weak shock of M1 < 1.2 or less is required for acceptably low wave drag of transonic airfoils.
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8.4 Compressible Potential Flows
Since shock waves in practical transonic flows are weak, such flows are nearly isentropic outside the viscous
layers, so that their velocity field is nearly irrotational and hence can be represented by the full potential Φ.

V = ∇Φ (8.21)

Since this V is irrotational it cannot exactly represent the slightly rotational flow in a shock wake. Specif-
ically, defining V via the full potential will always result in exactly Vwake/V∞ = 1 in the far-downstream
shock wake. But as can be seen in Figure 8.9, in typical aerodynamic flows which have weak shock waves
this error in the shock’s wake velocity is very small, and the effects on the surface pressures and hence on
the lift are small as well. For this reason the slight error in the velocities will be neglected in most of the
subsequent compressible potential flow analyses.

An exception is the wave drag, which by definition (8.19) is exactly zero when Vwake/V∞ =1. This short-
coming will be resolved in Section 8.4.3 where the wave drag is defined in an alternative manner.

8.4.1 Full potential equation – problem formulation
A general compressible potential flow is described by the full potential (FP) equation which governs the full
potential field Φ(r ;M∞,α,β). The overall FP analysis problem is stated as follows.

FP flow equation: ∇ · (ρ∇Φ) = 0 (8.22)

where ρ = ρ∞

[
1 +

γ−1
2

M2
∞

(
1− ∇Φ · ∇Φ

V 2
∞

)]1/(γ−1)
(8.23)

BCs: ∇Φ · n̂ = 0 (on solid body) (8.24)

ΔΦ = Γ (on wake branch cut) (8.25)

Φ → Φ∞(α,β,Γ) (as r → ∞) (8.26)

The circulation variables Γ along the span are additional unknowns, and are constrained with matching Kutta
conditions along the span. Only one Γ and one Kutta condition is present in 2D.

8.4.2 Full potential solution
Because the isentropic density as given by (8.23) has a complicated nonlinear dependence on ∇Φ, analytic
solutions to the FP analysis problem are not possible even for very simple geometries. Instead, solutions
must be obtained numerically by using either a finite-volume or finite-element discretization method formu-
lated on a space-filling grid. Such a method is commonly called a Full Potential Solver. If transonic flows
are to be computed, some type of modification is also needed in order to capture shock waves. The most
common approach is to modify the density in the FP equation (8.22) by an upwinding term proportional to
the streamwise gradient of the density. One example of such a modification due to Hafez et al. [57] is

ρ → ρ − ν Δ�∇ρ · ∇Φ/|∇Φ| (8.27)

where ν is the upwinding parameter (comparable to unity in magnitude), and Δ� is the local grid cell size.
Note that in the limit of a very fine grid we have Δ� → 0 and the density modification term disappears, so
that the equation actually solved is consistent with the analytical FP equation.

Besides the body geometry, the required input parameters to the overall problem are the freestream Mach
number M∞ and the freestream flow angles α, β. The resulting pressure field then has the same functional
form as the potential,

p(r ;M∞,α,β)

p∞

=

[
1 +

γ−1
2

M2
∞

(
1− ∇Φ · ∇Φ

V 2
∞

)]γ/(γ−1)
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so that the integrated force and moment coefficients will then also depend on M∞, α, β (or M∞, α in 2D).

8.4.3 Limitations of full potential solutions
One limitation of the FP equation is that it applies only to inviscid flows. This can be mostly remedied by
using the Wall-Transpiration boundary layer model described in Chapter 3. For example, in the 2D case the
flow-tangency BC (8.24) would be modified to

ρ∇Φ · n̂ =
dm

ds
(8.28)

where m = ρeueδ
∗ is the viscous mass defect. This is governed by a suitable form of the boundary layer

equations which would need to be solved together with the FP equation.

Another limitation of the FP equation is that its resulting velocity field V = ∇Φ is irrotational, and hence its
solution will not have a shock wake like the one shown in Figure 8.8, even if the solution has a shock present
on the airfoil. The wave drag as calculated by far-field integral (8.19) over the shock wake will then incor-
rectly be zero. The correct calculation of wave drag therefore appears to require the direct pressure force
integration over the airfoil surface via (5.5). However, this was shown to be very sensitive to cancellation
errors in Section 5.1.2, so the following more accurate approach is needed.

Consider the control volume surface shown in Figure 8.10, consisting of the four pieces Souter, Scut, Sbody,
Sshock. The integral momentum theorem in the freestream x̂ direction summed over all four pieces can be
assumed to be zero, since the overall contour is topologically empty and contains only smooth potential flow
which satisfies the momentum equation. ∮

[ pn̂+ ρ(V· n̂)V ] · x̂ dS = 0

or
∮
outer
[ ] dS +

∮
cut
[ ] dS +

∮
body
[ ] dS +

∮
shock
[ ] dS = 0

In addition, in 2D flow the Souter piece can also assumed to be zero since the outer flow is potential and has
no momentum defect, and the Scut piece is also zero since its two n̂ vectors are opposite. Hence the two
remaining pieces must be equal and opposite, so we have

D′
wave =

∮
body
[ ] dS

= −
∮
shock
[ pn̂+ ρ(V· n̂)V ] · x̂ dS (8.29)

and therefore the wave drag can be computed by evaluating integral (8.29) only on the contour surrounding
the shock, noting that n̂ points into this contour. This avoids the cancellation errors which would occur with
evaluating the Sbody integral directly.

Similar arguments can be made for wave drag in 3D potential flows. In this case the Souter integral is only
the induced drag Di, which can be evaluated by Trefftz-plane integration over the wake cut as discussed
previously. The Sbody integral is then Di+Dwave, so that the integral over the shock-enclosing contour
isolates the wave drag component.

Dwave = −©
∫∫

shock
[ pn̂+ ρ(V· n̂)V ] · x̂ dS (8.30)
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Figure 8.10: Control volume surface for wave drag calculation from a potential-flow solution.

8.5 Small-Disturbance Compressible Flows

The full potential equation is very general, but it requires grid-based CFD solution methods which offer
little insight into compressible flow behavior. For this reason we will now consider the more restricted class
of Small-Disturbance Flows, which in many circumstances can be treated by superposition-based solution
methods.

8.5.1 Perturbation velocities

The perturbation velocity is defined in the usual way, as the difference between the local velocity V and the
freestream velocity V∞. To minimize equation complexity, we will from now on assume that the freestream
is along the x axis, so that the angles of attack or sideslip are in the geometry definition. Furthermore,
u, v, w will here denote the perturbation velocity components, which are also assumed to be normalized by
the freestream speed V∞. The local total velocity V and its magnitude V are then expressed as follows.

V∞ = V∞ x̂ (8.31)

V = V∞ [ (1 + u ) x̂ + v ŷ + w ẑ ] (8.32)

V 2 ≡ V ·V = V 2
∞

[
1 + 2u + u2+v2+w2

]
(8.33)

The local adiabatic speed of sound, the local Mach number, and the isentropic density and pressure expres-
sions can also be expressed in terms of the perturbation velocities as follows.

a2 = a2∞ − γ−1
2

(
V 2 − V 2

∞

)
= a2∞

{
1 − (γ−1)M2

∞

[
u+ 1

2 (u
2+v2+w2)

]}
(8.34)

M2 ≡ V 2

a2
= M2

∞

[
1 + 2u+ u2+v2+w2

] {
1− (γ−1)M2

∞

[
u+ 1

2 (u
2+v2+w2)

]}−1
(8.35)

ρ

ρ∞

=

(
a2

a2∞

)1/(γ−1)
=

{
1 − (γ−1)M2

∞

[
u+ 1

2 (u
2+v2+w2)

]}1/(γ−1)
(8.36)

p

p∞

=

(
a2

a2∞

)γ/(γ−1)
=

{
1 − (γ−1)M2

∞

[
u+ 1

2 (u
2+v2+w2)

]}γ/(γ−1)
(8.37)
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8.5.2 Small-disturbance approximation
The above restatement of the various flow quantities in terms of perturbation velocities has so far been exact,
with no new approximations introduced. We now consider Small-Disturbance Flows, where the condition

u, v, w � 1 (8.38)

is assumed to hold. This is generally valid if

• The geometry is slender: t/c � 1 for an airfoil, or d/� � 1 for a fuselage.

• The aerodynamic angles are small: α � 1 and β � 1

Under normal circumstances it is tempting to drop all higher powers of the perturbation velocities like
u2, uv, etc. and retain only the linear terms to greatly simplify the flow equations. However, this will be
seen to be premature for transonic flows, where some of the nonlinear terms always remain crucial. Hence
we will perform the simplification in three steps:

1. First only the cubic and higher terms will be dropped.

2. Next, all the quadratic terms be dropped except the ones which remain indispensable.

3. Next, all the quadratic terms will be dropped, finally giving a linear problem.

8.5.3 Second-order approximations

Using the Taylor series expansion in a small parameter ε

(1−ε)−1 = 1 + ε + ε2 + . . . (8.39)

the local Mach number expression (8.35) is converted from a rational form to a polynomial form,

M2 = M2
∞

{
1 +

(
1+ γ−1

2 M2
∞

)[
2u+u2+v2+w2

]
+ γ−1

2 M2
∞

(
1+ γ−1

2 M2
∞

)
4u2 + . . .

}
(8.40)

where “. . .” denotes cubic terms O
(
M4

∞|u, v, w|3
)

and higher. Using the more general Taylor series ex-
pansion

(1−ε)b = 1 − bε + 1
2 b(b−1)ε2 + . . . (8.41)

the isentropic density and pressure (8.36), (8.37) likewise convert from power-law forms to the following
polynomial forms.

ρ

ρ∞

= 1 − M2
∞

[
u+

(
1
2−

2−γ
2 M2

∞

)
u2 + 1

2 (v
2+w2)

]
+ . . . (8.42)

p

p∞

= 1 − γM2
∞

[
u+ 1

2(1−M2
∞)u2 + 1

2(v
2+w2)

]
+ . . . (8.43)

Again, the “. . .” denotes cubic terms and higher.

To put the continuity equation into a polynomial form, we first need to expand the components of the
normalized mass flux ρV/ρ∞V∞. These are obtained by multiplying the ρ/ρ∞ expression (8.42) in turn
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with each component of V/V∞, and then collecting the various powers and products of u, v, w.

ρ

ρ∞

(1+u) =
{
1 − M2

∞

[
u+

(
1
2−

2−γ
2 M2

∞

)
u2 + 1

2(v
2+w2)

]
+ . . .

}
(1+u)

= 1 + (1−M2
∞)u − M2

∞

[(
3
2 − 2−γ

2 M2
∞

)
u2 + 1

2 (v
2 + w2)

]
+ . . . (8.44)

ρ

ρ∞

v =
{
1 − M2

∞

[
u+

(
1
2−

2−γ
2 M2

∞

)
u2 + 1

2(v
2+w2)

]
+ . . .

}
v

= v − M2
∞ uv + . . . (8.45)

ρ

ρ∞

w =
{
1 − M2

∞

[
u+

(
1
2−

2−γ
2 M2

∞

)
u2 + 1

2(v
2+w2)

]
+ . . .

}
w

= w − M2
∞ uw + . . . (8.46)

We next insert these mass flux component expressions into the compressible continuity equation, and also
put the flow-tangency boundary condition in perturbation-velocity form.

1

ρ∞V∞
∇ · (ρV) = 0 (8.47)

1

V∞
V · n̂ = 0 (Body BC) (8.48)

This gives the second-order continuity equation and corresponding flow-tangency BC.{
(1−M2

∞)u − 1
2M

2
∞

[
Qu2 + v2 + w2

]}
x
+

{
v−M2

∞uv
}
y
+

{
w−M2

∞uw
}
z

= 0 (8.49)

where Q ≡ 3− (2−γ)M2
∞ (8.50)

(1+u)nx + v ny + wnz = 0 (Body BC) (8.51)

8.5.4 Perturbation potential flows
We now assume irrotational flow. This allows eliminating the three u, v, w perturbation velocity components
in terms of the single normalized perturbation potential variable φ, which is the usual perturbation potential
ϕ normalized with the freestream.

φ = ϕ/V∞ (8.52)

u x̂ + v ŷ + w ẑ = ∇φ (8.53)

V = V∞ + V∞(u x̂+ v ŷ + w ẑ) = V∞ [(1 + φx) x̂+ φy ŷ + φz ẑ] (8.54)

Note that φ has units of length, so that ∇φ is dimensionless.

Second-order perturbation potential equation

Replacing u, v, w with φx, φy, φz in equations (8.49),(8.51) gives the Second-Order Perturbation Potential
(PP2) equation and associated flow-tangency condition:[

(1−M2
∞)φx − 1

2M
2
∞

(
Qφ2

x + φ2
y + φ2

z

)]
x
+

[
φy −M2

∞φxφy

]
y
+

[
φz −M2

∞φxφz

]
z

= 0 (8.55)

(1+φx)nx + φy ny + φz nz = 0 (Body BC) (8.56)
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Transonic small-disturbance equation

We now note that for a small-disturbance flow, most of the quadratic terms in (8.55) can be dropped, except
when the freestream flow is close to sonic, M∞	1. In this case we can approximate Q 	 γ+1, and we also
note that Qφ2

x 	 (γ+1)φ2
x may not be small compared to (1−M2

∞)φx. Furthermore, for slender bodies
we have

nx � ny , nz

so that the product φxnx in (8.56) is a higher-order quantity compared to φyny and φznz . Hence we drop all
quadratic terms except for φ2

x, which results in the following nonlinear transonic small-disturbance (TSD)
equation, and a first-order flow-tangency condition.[

(1−M2
∞)φx − γ+1

2 M2
∞ φ2

x

]
x
+

[
φy

]
y
+

[
φz

]
z
= 0 (8.57)

nx + φy ny + φz nz = 0 (Body BC) (8.58)

An alternative equivalent form of the TSD equation (8.57) is[
(1−M2

∞) − (γ+1)M2
∞ φx

]
φxx + φyy + φzz = 0 (8.59)

which looks like a Laplace equation except for the φx-dependent coefficient multiplying the φxx term.

Strictly speaking, the quadratic terms φ2
y+φ2

z in (8.56) should also have been retained in the TSD equa-
tion (8.57). However, because of the strong lateral dilation effect shown in Figure 8.5 they are typically
much smaller than Qφ2

x and hence can be dropped. One possible exception is in cases with strongly swept
shock waves, in which these may need to be retained.

Prandtl-Glauert equation

Provided the freestream flow is sufficiently far from sonic, we can in addition drop the quadratic term from
the TSD equation (8.57) or (8.59) to give the Prandtl-Glauert (PG) equation.

(1−M2
∞)φxx + φyy + φzz = 0 (8.60)

The first-order flow-tangency condition (8.58) remains the same here. The most significant change from
the TSD equation is that the PG equation is now linear, which is an enormous simplification which will be
extensively exploited in the subsequent sections.

Laplace equation

As a final step, if we assume low speed flow, with M2
∞ � 1, the PG equation (8.60) simplifies to the Laplace

equation.
φxx + φyy + φzz = 0 (8.61)

Although this equation appears to be subject to the same small-disturbance approximations as its PG, TSD,
and PP2 predecessors, it is in fact completely general for any low-speed flow. The reason is that all the
higher-order terms which were dropped were also multiplied by M2

∞ or higher powers, so that with M2
∞ 	 0

all these dropped terms were already negligible anyway. Alternatively, the Laplace equation could also have
been obtained directly from the starting continuity equation (8.47) by a priori assuming that ρ is constant in
the low speed case.
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Figure 8.11: Qualitative ranges of validity of various general and small-disturbance potential-flow
equations, versus freestream Mach, and versus body slenderness as measured by the perturbation
velocity averaged over the flow-field.

8.5.5 Ranges of validity
Figure 8.11 diagrams the range of validity of the five potential equations considered here, versus |∇φ|avg
which is a measure of “non-slenderness,” and versus the freestream Mach number M∞.

The following observations can be made:

• At low speeds where M2
∞ � 1, all five equations are equally valid, even for non-slender bodies

(viscous effects are not being considered here). The simplest Laplace equation is then the logical
choice to use here.

• For low-subsonic Mach numbers, above M∞ > 0.3 or so, compressibility effects become progres-
sively more pronounced, in which case the PG equation becomes the logical choice to use.

• For flows sufficiently close to sonic, M∞ 	 1, specifically transonic flows, the PG equation becomes
unsuitable because it cannot represent normal shock waves. In this case the simplest possible equation
which can be used is TSD, since it can capture normal shock waves and their associated wave drag.

• For supersonic flows sufficiently far past M∞ = 1, the PG equation again becomes valid. In this
situation it becomes a form of the wave equation, and can represent weak oblique shocks for which
the flow remains everywhere locally supersonic.

• For all but very low freestream Mach numbers, the PG or TSD equations become increasingly re-
stricted to smaller body thicknesses and/or small angles of attack as M∞ increases. The reason is that
the leading terms which were dropped in the PG and TSD derivations were of the form M2

∞φxφy, etc.
Hence, for a fixed error from these terms, the upper limit on the tolerable |∇φ|avg must decrease as
M∞ increases.

• For a sufficiently fat body, at some point depending on M∞, it is necessary to switch to the PP2 or FP
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equations for adequate accuracy. Solving PP2 is not any easier or less expensive than solving the FP
equation, so PP2 is not used in practice (here it was only a stepping stone to TSD and PG).

• For all but low-speed flows, FP also has an upper limit on body slenderness, even though no small-
disturbance approximations were used in its derivation. The reason is that high-speed non-slender
flows will have strong shock waves and large shock-wake velocity defects, which invalidate the isen-
tropy and irrotationality assumptions underlying the FP equation.

8.6 Prandtl-Glauert Analysis

8.6.1 Prandtl-Glauert interpretation
The significance of the M2

∞ term in the PG equation (8.60) can be explained as follows. Starting with the
velocity V written in terms of the perturbation potential (8.54) we have

V∞ (φxx + φyy + φzz) = ∇ ·V ≡ σ =
1

2

∇(V 2) ·V
a2

(8.62)

where the last term is the field source σ as given by the compressible continuity equation (8.1). For small-
disturbance flows where |∇φ| � 1 we can now make the following approximations to the quantities above.

∇(V 2) 	 2V 2
∞ (φxx x̂ + φxy ŷ + φxz ẑ)

V 	 V∞ x̂

a2 	 a2∞

σ =
1

2

∇(V 2) ·V
a2

	 V 3
∞

a2∞
φxx = M2

∞ (V∞ φxx)

Equation (8.62) then simplifies to

φxx + φyy + φzz 	 M2
∞φxx (8.63)

which is equivalent to the PG equation (8.60). Hence, the extra M2
∞φxx term in the PG equation is nothing

more than an approximation to the field source distribution σ(r). The great simplification here is that this ap-
proximate field source is now linearly related (i.e. proportional) to the unknown φ(r) perturbation potential’s
derivatives, and as a result can be eliminated through a linear variable transformation as follows.

8.6.2 Prandtl-Glauert transformation
The Prandtl-Glauert transformation applies to the overall flow problem, including the boundary conditions.
It has a single scaling parameter

β ≡
√

1−M2
∞ (8.64)

called the Prandtl-Glauert factor (not to be confused with the sideslip angle). The transformation of the
flow problem has the form φ(x,y,z;M∞) → φ̄(x̄,ȳ,z̄) where the PG variables denoted by the overbar are
defined as follows. {

x̄
ȳ
z̄

}
=

{
x
βy
βz

}
, φ̄ = β2φ (8.65)

As sketched in Figure 8.12, the geometry is shrunk in y, z by the β factor. This reduces all the geometric
angles, aspect ratios, and also the x components of all normal vectors n ≡ {nx ny nz}T by the same factor.

ᾱ = β α , ĀR = β AR , n̄ ≡
{
n̄x
n̄y
n̄z

}
=

{
βnx
ny
nz

}
(8.66)
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It also gives the following relations between the various derivatives.

( )x = ( )x̄ ( )y = β( )ȳ ( )z = β( )z̄

( )xx = ( )x̄x̄ ( )yy = β2( )ȳȳ ( )zz = β2( )z̄z̄
(8.67)

Using the above transformation relations converts the PG equation and wall BC in physical space into the
Laplace equation and wall BC in the transformed space.

φ̄x̄x̄ + φ̄ȳȳ + φ̄z̄z̄ = 0 (8.68)

Wall BC: φ̄ȳn̄y + φ̄z̄n̄z = −n̄x (8.69)

or: φ̄z̄ = Z̄ ′
(x̄) − ᾱ (in 2D) (8.70)

V
x

(x,y,z)

M c M

=

z

(x,y,z) =

Z(x)

x =

n n

2z = z

c = c
x

V

= 0

(x)Z =   Z

φ
φφ

)(

Transformed  FlowReal  Flow

α α ασ

σ = 0

Figure 8.12: Prandtl-Glauert transformation from physical variables (left) to PG variables (right).

The fact that a compressible flow looks incompressible after the PG transformation can be explained or
interpreted in a number of ways. One explanation is that the perturbation velocity field in the transformed
space has zero divergence and zero curl,

σ̄ ≡ ∇̄ ·
(
∇̄φ̄

)
= 0 (equation (8.68) )

ω̄ ≡ ∇̄×
(
∇̄φ̄

)
= 0 (identity)

and hence is an incompressible and irrotational flow. Another useful although less rigorous explanation is
associated with the thickening effect, which reduces percentage-wise streamtube area variations in the real
flow. A low speed flow over a more slender body also has smaller streamtube area variations, so the y, z-
scaled incompressible flow mimics the real compressible flow’s more uniform streamtube area distributions.

8.6.3 Prandtl-Glauert equation solution procedure
The great practical importance of the PG transformation is that it allows small-disturbance subsonic com-
pressible flow problems which are not transonic (not too close to M∞ =1) to be solved by incompressible
potential flow methods. This is accomplished by the following systematic procedure.

1. The real flow problem has geometry defined in x, y, z, with given M∞ > 0

2. Scale all y, z dimensions by the PG factor β =
√

1−M2
∞. This gives a transformed geometry in the

PG space x̄, ȳ, z̄, with ᾱ, n̄x, ĀR . . . all reduced by the same factor of β.

3. Calculate the flow over the transformed geometry using an incompressible flow method and related
flow models. These include thin airfoil theory, vortex-lattice, panel, far-field approximations, images,
etc. This gives the transformed perturbation potential φ̄(x̄,ȳ,z̄), and/or the transformed perturbation
velocities φ̄x̄, φ̄ȳ, φ̄z̄ , pressures C̄p, forces C̄L, etc.
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4. Calculate the physical perturbation potential and/or velocities using the reverse PG transformations.

φ =
1

β2 φ̄ (8.71)

φx =
∂(φ̄/β2)

∂ x̄
=

1

β2 φ̄x̄

φy =
∂(φ̄/β2)

∂(ȳ/β)
=

1

β
φ̄ȳ (8.72)

φz =
∂(φ̄/β2)

∂(z̄/β)
=

1

β
φ̄z̄

With the velocities available, the physical pressure coefficient can now be calculated directly from its
exact definition (8.12). But since the small-disturbance approximation is assumed to be valid here, it’s
useful to consider an alternative simplified small-disturbance form based on the asymptotic pressure
expression (8.43).

p

p∞

= 1 − γM2
∞φx + . . . (8.73)

Cp ≡ p− p∞

γ
2M

2
∞ p∞

	 −2φx =
1

β2

(
−2 φ̄x̄

)
=

1

β2 C̄p (8.74)

CL =
1

Sref

∫∫
ΔCp dx dy =

1

β2

(
1

S̄ref

∫∫
ΔC̄p dx̄ dȳ

)
=

1

β2 C̄L (8.75)

The advantage here is that if the incompressible solution method directly reports the pressures C̄p,
forces C̄L, etc., then the corresponding physical quantities can be obtained immediately. Relations
(8.74) and (8.75) are collectively known as Göthert’s Rule [58].

5. To calculate the induced drag coefficient the Trefftz plane wake integral (5.47) can be used, since this
only requires that the Trefftz plane’s perturbation flow be incompressible.

|V−V∞|2/a2∞ = |∇φ|2M2
∞ � 1

This is certainly valid even if M2
∞ itself is not small. Applying the reverse PG transformation to the

Trefftz plane wake integral gives the required induced drag transformation rule.

CDi = − 1

Sref

∫
Δφ

∂φ

∂n
ds =

1

β3

(
− 1

S̄ref

∫
Δφ̄

∂φ̄

∂n̄
ds̄

)
=

1

β3 C̄Di (8.76)

Compressible 2D airfoil

Consider the 2D airfoil problem for compressible flow, shown in Figure 8.12. Assuming the airfoil is very
thin for simplicity, its geometry is defined entirely by its Z(x) camberline shape. As discussed in the previous
unsteady-flow Chapter 7, and sketched in Figure 8.13, the vortex sheet strength representing the transformed
incompressible flow will have the form

γ̄(x̄) = γα ᾱ + γZ ε̄ (8.77)

where γα(x) and γZ(x) are sheet strength distributions for a unit α and a unit camber shape Z(x)/ε, respec-
tively, with ε being the maximum camber value. These unit distributions can be computed a priori. For
example, first-order thin airfoil theory as derived in Appendix D gives

γα(x) = 2V∞

√
c

x
− 1
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and γZ(x) depends in a more complicated manner on the particular unit camber shape. The circulation and
lift coefficient will then also have two corresponding independent components.

c̄� = c�α ᾱ + c�Z ε̄ (8.78)

where c�α ≡
∫ 1

0
2
γα
V∞

d(x/c) = 2π (8.79)

c�Z ≡
∫ 1

0
2
γZ

V∞
d(x/c) (8.80)

γ− γα α−

ε−α−

γ ε−Z

Figure 8.13: Thin airfoil vortex sheet strength and corresponding loading have independent compo-
nents proportional to angle of attack ᾱ and maximum camber ε̄.

The compressible c� is computed by applying the reverse transformations to the solution (8.78).

c� =
1

β2 c̄� =
1

β2 [ c�α (βα) + c�Z (βε) ] =
1

β
[ c�α α + c�Z ε ] (8.81)

c� =
1

β
(c�)inc (8.82)

The final relation (8.82), called Prandtl’s Rule, states that the 2D lift coefficient for the compressible case
increases by the factor of 1/β over the incompressible value (c�)inc for that same airfoil. This can be
considered a “shortcut method” for 2D cases, since (c�)inc is the incompressible value for the physical
(not transformed) airfoil shape and angle of attack. It also applies to calculation of Cp, cm, etc. However,
Prandtl’s Rule does not hold for 3D cases, where it is necessary to perform the PG geometry transformation
and then use Göthert’s Rule to obtain the correct compressible solution.

Compressible 3D finite wing

Consider a simple, flat rectangular wing with aspect ratio AR and an uncambered airfoil. The objective is to
determine its CL and CDi for a given angle of attack α and freestream Mach M∞. Following the PG solution
procedure we transform this to x̄, ȳ, z̄ space where the corresponding transformed wing has

ĀR = β AR (8.83)

ᾱ = β α (8.84)

and its flow-field is governed by the Laplace equation for φ̄. For a high aspect ratio wing this is approx-
imately solved by classical lifting line theory given in Appendix E. The final results for the lift coeffi-
cient (E.37) and induced drag coefficient (E.23) can then be directly applied to the transformed problem,

C̄L 	 c�α
1 + c�α/(πĀR)

ᾱ (8.85)

C̄Di =
C̄2
L

πĀR ē
(8.86)



Compressible Aerodynamic Flows 177

where c�α 	 2π is the wing airfoil’s 2D lift-curve slope. An offset to ᾱ from the wing airfoil camber has
been omitted from (8.85), so that ᾱ is in effect measured from the transformed wing airfoil’s zero-lift line.
The span efficiency ē(ĀR) depends on the transformed wing’s aspect ratio, as shown in Figure 8.14.
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Figure 8.14: Span efficiency versus aspect ratio for simple rectangular wing in incompressible flow,
calculated with a Vortex-Lattice method.

We now apply the reverse transformation to the incompressible results (8.85), (8.86).

CL =
1

β2
C̄L =

1

β2

c�α
1 + c�α/(π βAR)

(βα) =
c�α

β + c�α/(πAR)
α (8.87)

CDi =
1

β3
C̄Di =

1

β3

(β2CL)
2

π (βAR) ē
=

C2
L

π AR ē
(8.88)

The 3D lift-curve slope of the wing ∂CL/∂α is now seen to depend on β as well as AR, as plotted in
Figure 8.18. Two limiting cases or interest are

∂CL

∂α
	 πAR , AR→0

∂CL

∂α
	 c�α

β
, AR→∞ (2D)

so that small aspect ratio wing flows are independent of compressibility effects. This can be seen in the
coalescence of the incompressible and compressible curves in Figure 8.15.
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Figure 8.15: Lift-curve slope of simple rectangular wing versus aspect ratio, for two freestream
Mach numbers.

For a given CL, the CDi is seen to be mostly unaffected by compressibility, except via the small effect of
the span efficiency ē which decreases slightly with ĀR. For a near-elliptical planform we would have ē	1,
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in which case CDi would be essentially independent of M∞. This insensitivity of CDi to the aircraft flight
Mach is consistent with Trefftz-plane theory, in which the lift and the induced drag are implicitly related
to each other via the aircraft’s trailing vorticity distribution. The aircraft’s compressible near-field has no
bearing on this lift and induced drag relation.

Low-speed infinite swept wing

We will now investigate the lift characteristics of an infinite swept wing. The incompressible case will be
considered first, followed by the compressible case treated via the PG transformation in the next section.

An infinite wing with sweep angle Λ and streamwise chord c is shown in Figure 8.16. The angle of attack α
is defined along the x-axis as usual, and hence it also appears in the streamwise section.

V

y

x

y
c

c
Λ

V

V

α
c

x

x

c
x

αV V

zz

Streamwise  section Perpendicular  section

Figure 8.16: Lift of infinite swept wing is determined entirely by geometry and velocity in perpen-
dicular x′z′-plane section.

Consider the flow as described in the rotated x′, y′, z′ coordinates where y′ is along the wing, and the x′z′-
plane is perpendicular to the wing. Since each y′ location is the same, we must have ∂()/∂y′ = 0 for all
flow-field quantities. The inviscid y′-momentum equation is then

ρu′
∂v′

∂x′
+ ρw′ ∂v

′

∂z′
= − ∂p

∂y′
= 0 (8.89)

which implies that v′ is everywhere constant, and equal to the wing-parallel freestream component

v′(r) = V∞ sin Λ ≡ V‖ (8.90)

so as to match the freestream. The continuity and remaining x′, z′-momentum equations are

∂ ρu′

∂x′
+

∂ ρw′

∂z′
= 0

ρu′
∂u′

∂x′
+ ρw′∂u

′

∂z′
= − ∂p

∂x′
(8.91)

ρu′
∂w′

∂x′
+ ρw′ ∂w

′

∂z′
= − ∂p

∂z′

which describe potential 2D flow in the perpendicular x′z′-plane. Specifically, the velocities and pressure
fields have the form u′, w′, p′(x′,z′), and depend only on the projected airfoil shape, chord, freestream veloc-
ity, and angle of attack, all denoted by the ( )⊥ subscript.

c⊥ = c cos Λ (8.92)

V⊥ = V∞ cos Λ (8.93)

α⊥ = α/ cos Λ (8.94)
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And since the pressure field depends only on these parameters, the lift must also, with the spanwise V‖

velocity being irrelevant.

Assuming α⊥ is defined from the airfoil’s zero-lift line, the incompressible 2D-section lift is

dL = 1
2ρV

2
⊥ c�α α⊥ dS (8.95)

where c�α 	2π is the 2D lift-curve slope, and dS = c⊥ dy′ = c dy is an element of wing area on which the
element of lift dL acts. The total lift is then

L =

∫
dL = 1

2ρV
2

⊥ c�α α⊥ S

= 1
2ρ(V∞ cos Λ)2 c�α (α/ cos Λ)S (8.96)

CL ≡ L
1
2ρV

2
∞S

= c�α α cos Λ (8.97)

∂CL

∂α
= c�α cos Λ (8.98)

so that sweep reduces the lift by the factor cos Λ relative to an unswept wing at the same α.

Compressible infinite swept wing

For the compressible infinite swept wing, the PG transformation gives the following modified geometry,
also sketched in Figure 8.17.

ᾱ = β α (8.99)

tan Λ̄ =
1

β
tan Λ

or equivalently cos Λ̄ =
β cos Λ√

β2 cos2Λ + sin2Λ
(8.100)

V

y

c
Λ

V
V

x

y

c
Λ

V

x

−

−

−

−

Transformed  FlowReal  Flow

= y

M M = 0)(

Figure 8.17: Prandtl-Glauert transformation of infinite swept wing.

Applying the previously-derived incompressible solution (8.97) we have

C̄L = c�α ᾱ cos Λ̄ (8.101)
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and the compressible CL is then obtained using Göthert’s Rule and the reverse PG transformations.

CL =
1

β2
C̄L =

1

β2
c�α β α

β cos Λ√
β2 cos2Λ + sin2Λ

=
c�α cosΛ√

β2 cos2Λ + sin2Λ
α (8.102)

∂CL

∂α
=

c�α cos Λ√
β2 cos2Λ + sin2Λ

(8.103)

The ∂CL/∂α expression above is plotted in Figure 8.18. Two limiting cases of interest are

∂CL

∂α
	 c�α

β
, Λ→0◦ (2D)

∂CL

∂α
	 c�α cos Λ

sinΛ
, Λ→90◦

so that large sweep angles mitigate compressibility effects, as can be seen by the coalescence of the incom-
pressible and compressible curves in Figure 8.18.
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Figure 8.18: Lift-curve slope of infinite swept wing versus sweep, for two freestream Mach num-
bers. Sweep reduces the influence of Mach number on the wing’s lift.

8.7 Subsonic Compressible Far-Fields
8.7.1 Far-field definition approaches
Two approaches can be used to define the far-field for any given compressible flow situation:

1. Define the far-field expansion in physical space. A complication now is that the integrals for the far-
field coefficients must include contributions from the field sources. For example, the 2D far-field x-doublet
strength of an airfoil represented by source and vortex sheets is

κx =

∫
(−λx′ + γz′) ds′ +

∫∫
−1

2

∇(V·V) ·V
a2

x′ dx′ dz′

where the last integral over the field sources σ(x′,z′) would be difficult or impractical to compute in practice.

2. Define the far-field expansion in Prandtl-Glauert space. Now the x-doublet strength is

κ̄x =

∫
(−λ̄x̄′ + γ̄z̄′) ds̄′ (8.104)

in which the field source integral does not appear, since σ̄ 	 0 within the transformed flow-field. Existing
incompressible-flow estimates for the coefficients can therefore be used. The resulting transformed far-
field potential or velocities are then reverse-transformed to obtain the physical potential or velocities. This
far-field definition approach is clearly better, and will be used here.
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8.7.2 Compressible 2D far-field
Since the transformed flow problem is incompressible, we can re-use the far-field expressions for the far-
field potentials and velocities which were developed in Chapter 2. For the 2D case we have

φ̄ff(x̄,z̄) =
Λ̄

2π
ln r̄ − Γ̄

2π
θ̄ +

κ̄x
2π

x̄

r̄2
+

κ̄z
2π

z̄

r̄2
(8.105)

∂φ̄ff

∂x̄
(x̄,z̄) =

Λ̄

2π

x̄

r̄2
+

Γ̄

2π

z̄

r̄2
+

κ̄x
2π

z̄2−x̄2

r̄4
+

κ̄z
2π

−2x̄z̄

r̄4
(8.106)

∂φ̄ff

∂z̄
(x̄,z̄) =

Λ̄

2π

z̄

r̄2
− Γ̄

2π

x̄

r̄2
+

κ̄x
2π

−2x̄z̄

r̄4
+

κ̄z
2π

x̄2−z̄2

r̄4
(8.107)

where r̄, θ̄ are defined in the transformed space.

r̄ ≡
√

x̄2 + z̄2 =
√

x2 + (βz)2 =
√

x2 + (1−M2
∞)z2 (8.108)

θ̄ ≡ arctan
(z̄
x̄

)
= arctan

(
βz

x

)
(8.109)

The four far-field coefficients can be defined directly from the incompressible definitions, with the reverse
transformation immediately included to put them in terms of the physical parameters.

Λ̄ = V∞δ̄∗∞ = V∞δ∗∞ β (8.110)

Γ̄ =
1

2
V∞c̄ c̄� =

1

2
V∞c c� β

2 (8.111)

κ̄x = V∞Ā

(
1+

t̄max

c̄

)
= V∞A β

(
1+β

tmax

c

)
(8.112)

κ̄z =
1

2
V∞c̄2 c̄m0 =

1

2
V∞c2 cm0 β

2 (8.113)

A complication in relating Λ̄ to the drag coefficient is that at high speeds the boundary layer and wake fluid is
heated significantly via friction, which reduces its density relative to the potential flow. The reduced density
increases δ∗ relative to θ, as can be seen from comparing their definitions (4.4) and (4.11) for ρ/ρe<1. An
approximate relation between the far-downstream thicknesses is

δ∗∞ 	
(
1 + (γ−1)M2

∞

)
θ∞ (8.114)

which follows from the assumption that the wake has a constant total enthalpy, as discussed in Section 1.6.
The far-field source (8.110) can then be more conveniently given in terms of the profile drag coefficient
cd = 2θ∞/c as follows.

Λ̄ = V∞ θ∞ β
(
1 + (γ−1)M2

∞

)
=

1

2
V∞ c cd β

(
1 + (γ−1)M2

∞

)
(8.115)

With all the transformed far-field coefficients known, the transformed perturbation potential and velocities
can be calculated from (8.105),(8.106),(8.107) at any field point of interest. The physical perturbation
potential and velocities are then obtained by the usual reverse transformations:

φff =
1

β2
φ̄ff (8.116)

uff =
∂φff

∂x
=

1

β2

∂φ̄ff

∂x̄
(8.117)

vff =
∂φff

∂y
=

1

β

∂φ̄ff

∂ȳ
(8.118)

wff =
∂φff

∂z
=

1

β

∂φ̄ff

∂z̄
(8.119)
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One complication with this treatment is the far-field contribution of the higher-order compressibility terms
in the PP2 equation (8.55), which are ignored in the first-order PG equation. Specifically, the source and
vortex parts of φff in (8.105) have their own field-source distributions as given by (8.1), which then should
be included in the κ̄x integral (8.104) above, and the corresponding κ̄z integral as well. This correction is
treated by Cole and Cook [59]. The main effect is that an airfoil’s far-field x-doublet now also depends to
some extent on its lift, not just on its area.

8.7.3 Compressible 3D far-field
The 3D incompressible far-field potential and velocities, when written using the transformed variables,
become applicable to the compressible case,

φ̄ff(x̄,ȳ,z̄) =
Σ̄

4π

−1

r̄
+

K̄x

4π

x̄

r̄3
+

K̄y

4π

ȳ

r̄3
+

K̄z

4π

z̄

r̄3
(8.120)

∂φ̄ff

∂x̄
(x̄,ȳ,z̄) =

Σ̄

4π

x̄

r̄3
+

K̄x

4π

r̄2−3x̄2

r̄5
+

K̄y

4π

− 3x̄ȳ

r̄5
+

K̄z

4π

− 3x̄z̄

r̄5
(8.121)

∂φ̄ff

∂ȳ
(x̄,ȳ,z̄) =

Σ̄

4π

ȳ

r̄3
+

K̄x

4π

− 3x̄ȳ

r̄5
+

K̄y

4π

r̄2−3ȳ2

r̄5
+

K̄z

4π

− 3ȳz̄

r̄5
(8.122)

∂φ̄ff

∂z̄
(x̄,ȳ,z̄) =

Σ̄

4π

z̄

r̄3
+

K̄x

4π

− 3x̄z̄

r̄5
+

K̄y

4π

− 3ȳz̄

r̄5
+

K̄z

4π

r̄2−3z̄2

r̄5
(8.123)

r̄ ≡
√

x̄2 + ȳ2 + z̄2 =
√

x2 + (1−M2
∞)(y2+z2) (8.124)

The incompressible 3D far-field analysis of Section (2.12) gives the far-field source Σ in terms of the body’s
wake momentum defect and drag, and gives the far-field x–doublet Kx in terms of the body’s volume.
Noting that both the area and volume scale as β2 in the PG transformation, the transformed strengths for the
transformed far-field expansion are given in terms of the physical parameters as follows. Relation (8.114) is
also applied to relate the wake displacement area to the momentum area and drag.

Σ̄ = V∞Δ̄∗
∞ = V∞Δ∗

∞ β2 =
1

2
V∞Sref CDp β

2
(
1 + (γ−1)M2

∞

)
(8.125)

K̄x = V∞ V̄ = V∞ V β2 (8.126)

8.8 Small-Disturbance Supersonic Flows

The Prandtl-Glauert equation is valid for slender supersonic flows sufficiently far beyond M∞ = 1. As a
minimum, the flow must be supersonic everywhere, with no locally-subsonic regions. Furthermore, the
perturbation velocities must be small enough so the quadratic and higher-order terms in the mass flux ex-
pansions (8.44)–(8.46) are much less than unity. Because these also scale as M2

∞ or M4
∞, the validity of the

PG equation becomes restricted to flows which are more and more slender as the Mach number increases.
This shrinking range of validity with increasing Mach number is indicated in Figure 8.11.

8.8.1 Supersonic flow analysis problem
The linearized small-disturbance supersonic flow problem has the same governing PG equation and flow-
tangency condition as the subsonic case,

− (M2
∞−1)φxx + φyy + φzz = 0 (8.127)

nx + φy ny + φz nz = 0 (Body BC) (8.128)
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but the φxx term now has a negative sign. This fundamentally changes the nature of the solutions, which
exhibit waves propagating from the body. It’s also necessary to redefine β so it stays real.

β ≡
√

M2
∞ − 1 (supersonic flows) (8.129)

8.8.2 2D supersonic airfoil
The wave-like nature of supersonic PG solutions is most easily seen in the 2D thin airfoil case, where we
drop φyy and set (nx, ny, nz)=(α−Z ′ , 0 , 1). The PG problem (8.127), (8.128) then simplifies to

− β2φxx + φzz = 0 (8.130)
φz = Z ′ − α (on 0≤x≤c , z=0± ) (8.131)

which has the following solution, shown in Figure 8.19 as the separate α and Z ′(x) components.

φ(x,z ;M∞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , ξ±<0 (upstream of wave systems)
1
β [ α ξ+ − Zu(ξ

+) ] , 0≤ξ+≤c , z>0 (inside upper wave system)
1
β [−α ξ− + Z l(ξ

−) ] , 0≤ξ−≤c , z<0 (inside lower wave system)
1
β [ ±α c ] , c<ξ± (downstream of wave systems)

(8.132)

ξ+(x,z ;M∞) = x− βz

ξ−(x,z ;M∞) = x+ βz
(8.133)
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Figure 8.19: Supersonic potentials over 2D airfoil. Left: α=0.05 . Right: Z(x)=0.2(x−x2/c).

The ξ functions are called characteristics, along which the solution is constant in this case. Figure 8.20
shows the perturbation velocities and streamlines for the thickness-only case.

The perturbation x-velocities give the pressure coefficients.

Cpu = −2 (φx)u = −2
dφ

dξ+

∂ξ+

∂x
=

2

β

[
−α + Z ′

u(ξ
+)
]

(8.134)

Cp l
= −2 (φx) l = −2

dφ

dξ−

∂ξ−

∂x
=

2

β

[
α − Z ′

l(ξ
−)
]

(8.135)

The lift coefficient can then also be computed, assuming the airfoil has Zu=Z l=0 at x = 0, c.

c� =

∮
−Cp n̂ · ẑ d(x/c) =

∫ 1

0
(Cp l

− Cpu)z=0 d(x/c) =
4

β
α (8.136)
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Figure 8.20: Supersonic flow over 2D airfoil with symmetric thickness only (α=0).

Relation (8.136) is the Ackeret equation for 2D supersonic lift. The lift-curve slope is dc�/dα = 4/β which
can be compared with the 2π/β value on the subsonic side. Interestingly, the supersonic c� is independent
of the airfoil shape, since it does not have the c�0 camber term of the subsonic case.

The lift can also be obtained from the circulation via the Kutta-Joukowski theorem, which is valid for
compressible flows. The circulation is the wake potential jump given by the last form in (8.132).

c� ≡ L′

1
2ρ∞V 2

∞c
=

ρ∞V∞ Γ
1
2ρ∞V 2

∞c
=

2Γ

cV∞
=

2Δφwake

c
=

4

β
α (8.137)

Unlike subsonic inviscid 2D airfoils which have zero drag, supersonic inviscid 2D airfoils in general have
nonzero wave drag. This is associated with the oblique waves which carry energy away from the airfoil, and
hence is different in nature than the wave drag due to a normal shock on subsonic/transonic airfoils which
dissipates energy locally. Using the integral momentum theorem on the contour around the airfoil shown in
Figure 8.21, we have

D′
w =

∮
−ρV· n̂ (V−V∞) · x̂ dl 	 −ρ∞V 2

∞

∮
φz φx nz dl (8.138)

which can in general be separated into wave drag due to lift and wave drag due to thickness.

cdw ≡ D′
w

1
2ρ∞V 2

∞c
= (cdw)� + (cdw)τ (8.139)

(cdw)� =
4

β
α2 = c� α (8.140)

(cdw)τ =
2

β

∫ 1

0

[
(Z ′

u)
2 + (Z ′

l)
2
]
d(x/c) (8.141)

It should be noted that all the above results are valid only for thin airfoils at small angles of attack, since
the small-disturbance approximation was used to derive its governing PG equation. An alternative approach
is to use Shock-Expansion Theory based on oblique-shock and Prandtl-Meyer expansion-fan functions (see
Shapiro [60]). These do not rely on small-disturbance approximations and hence are more accurate, but they
do not apply to general 3D flows. Since most practical supersonic applications have low aspect ratios which
result in strongly 3D flow, we will restrict our analysis to the PG equation.
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Figure 8.21: Control volume contour for calculation of supersonic wave drag via the integral mo-
mentum theorem.

8.8.3 Canonical supersonic flow
The PG transformation (8.65), (8.66) can be applied to the supersonic case if the redefined β is used. Now
the PG equation (8.60) reduces to

− φ̄x̄x̄ + φ̄ȳȳ + φ̄z̄z̄ = 0 (8.142)

which is the wave equation. It has an implied M̄∞ =
√
2, β̄ = 1, so that its characteristics have slopes of

±1. This is called the canonical supersonic flow. This is only a minor simplification from the physical flow,
since it does not provide any special advantages for solving supersonic flow problems, unlike in subsonic
flow where the canonical flow is incompressible. Here its main advantage is theoretical, in that the properties
of all small-disturbance supersonic flows can be investigated by considering only the canonical case.

8.8.4 Supersonic singularities
The linearity of the PG equation allows the construction of general 3D flows by superposition of supersonic
singularities. These are analogues of the subsonic source, vortex, and doublet singularities, but have a num-
ber of important differences. One major difference is that a supersonic singularity is singular everywhere
on its Mach cone surface, not just at a single point like in the subsonic case, and is also undefined in some
regions of space. These features will require care in the construction of supersonic superposition integrals.

Hyperbolic radius

For defining supersonic-singularity kernel functions, a useful field function is the hyperbolic radius,

h(r ;M∞) ≡
√
x2 − (M2

∞−1)(y2+z2) (8.143)

which is the closest distance between the singularity point at the origin and the hyperboloid surface contain-
ing the field point r, as shown in Figure 8.22. The term “radius” originates from the observation that for the
incompressible case M∞=0 it reduces to the actual distance function h(r ; 0) = |r| =

√
x2+y2+z2. For a

singularity point located at some arbitrary location r′ other than the origin, the hyperbolic radius is obtained
by the usual shift of the function’s argument, h(r−r

′ ;M∞). The equation

h(r−r′ ;M∞) = 0

therefore defines a Mach cone with its apex at location r′.
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Figure 8.22: Hyperbolic radius function h(r ;M∞) for the supersonic case on the right is the nearest
distance x0 between the origin and the hyperboloid containing the field point r. For the incom-
pressible case M∞ = 0 on the left, this h function becomes the ordinary distance h(r ; 0) = |r|.

Supersonic point source

The basic 3D singularity from which all others can be constructed is the supersonic point source, which has
the following unit-strength potential or kernel function, plotted in Figure 8.23.

φ̂Σ(r ;M∞) =

⎧⎨⎩
−1

2π h
, x > β

√
y2+z2

0 , x ≤ β
√

y2+z2
(8.144)
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Figure 8.23: Potential of unit supersonic point source, plotted in canonical coordinates x̄ and r̄=√
ȳ2+z̄2. Potential is singular on Mach cone, defined by h=0 and emanating from the singularity

point which in the plot is at the origin. A polar mesh is used in the plot to show the edge of the
Mach cone.

The term “source” is a bit misleading here, since this flow-field is not just the usual point source at the
origin, but also includes the field source distribution

σ(r) = ∇2φ̂Σ = M2
∞

∂2φ̂Σ

∂x2

which is generated by the point source. It’s also important to note that an isolated supersonic source of
finite strength is not physical, since its σ field has an infinite strength everywhere on its h(r)=0 Mach cone
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surface. The velocity field also has a very strong 1/|r−r′|2 singularity everywhere in the vicinity of the
Mach cone surface. A more physical flow-field will be obtained only after a distribution of infinitesimal
point sources is superimposed, as will be considered in the following sections.

Supersonic line source

Superposition of a line of supersonic point sources (8.144) along the x-axis, from the origin downstream,
creates a supersonic line source. This can represent supersonic flow over a body of revolution.

φΛ(x,y,z ;M∞) =

∫ x−βr

0
Λ(x′) φ̂Σ(x−x′,y,z ;M∞) dx′

=
1

2π

∫ x−βr

0

−Λ(x′)√
(x−x′)2 − β2r2

dx′ (8.145)

r ≡
√

y2 + z2 (8.146)x

(x,y,z)

r
field point

x−β

field point’s
upstream
Mach cone

d

0 r

φφΣ Λ

source outside cone 
has no influence 
at field point

xd

x

(x −x,y,z)

part of line source inside 
upstream Mach cone

The radial distance r from the x-axis will be convenient to use for axisymmetric potential distributions such
as this one. Note that this is a change in notation from elsewhere in this book, where r typically denotes |r|.

The integration range in (8.145) is restricted to only those point sources on the x-axis which can influence
the field point x, y, z. This range is what lies inside the upstream Mach cone emanating from the field point,
as sketched in the figure above.

For the case of a unit line-source density Λ(x) = 1, we can integrate (8.145) to give the unit line source
potential, shown plotted in Figure 8.24.

φ̂Λ(x,y,z ;M∞) =

∫ x−βr

0
φ̂Σ(x−x′,y,z ;M∞) dx′

=
1

2π
ln

[
x− h

βr

]
=

1

2π
ln

⎡⎣ x

βr
−

√(
x

βr

)2

− 1

⎤⎦ (8.147)

∂ φ̂Λ

∂x
=

−1

2πh
(8.148)

∂ φ̂Λ

∂r
=

1

2π

(
1

h

β2r

x−h
− 1

r

)
(8.149)

Note that the highly singular nature of the point source potential has been mitigated to a weak logarithmic
singularity for the line source. The strength of the perturbation velocities ∂φ̂Λ/∂x and ∂φ̂Λ/∂r, has also
been mitigated to a 1/|r−r′| singularity along the origin’s Mach cone where h=0, and also on the x-axis
where r=0.

The local source line strength Λ(x) required to model a body of revolution with area and corresponding radius
distributions A(x)=πR(x)2 can be determined by same approach used in the subsonic case. Remembering
that φ is normalized with the freestream velocity, the flow tangency condition at the body surface is

∂φ

∂r

∣∣∣∣
r=R

=
dR

dx
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Figure 8.24: Potential of a unit supersonic line source extending from the origin downstream.

which when rewritten using the unit-strength radial velocity (8.149) gives the required line source strength
Λ in terms of the body geometry.

Λ
∂φ̂Λ

∂r

∣∣∣∣∣
r=R

=
Λ

2π

(
1√

x2 − β2R2

β2R

x−
√

x2 − β2R2
− 1

R

)
=

dR

dx
(8.150)

However, for a slender body we have R/x�1, so that we can approximate

√
x2 − β2R2 = x

√
1− β2R2

x2
	 x

(
1− 1

2

β2R2

x2

)
	 x

in which case the expression in the parentheses in (8.150) reduces to

1√
x2 − β2R2

β2R

x−
√

x2 − β2R2
− 1

R
	 1

x

β2R

x 1
2
β2R2

x2

− 1

R
=

1

x

2x

R
− 1

R
=

1

R

so that the overall expression (8.150) for Λ simplifies greatly.

Λ

2π

1

R
=

dR

dx

Λ = 2πR
dR

dx
=

dA

dx
(8.151)

Aside from a factor of V∞ (Λ here corresponds to Λ/V∞ as defined previously), the line source strength (8.151)
is exactly the same as expression (6.72) for a slender body in incompressible flow. Since Λ here also depends
only on the total cross-sectional area A(x), it can be used for bodies which aren’t exactly axisymmetric.

8.8.5 Wave drag of arbitrary slender bodies of revolution
The control-volume wave drag analysis of a 2D airfoil, which gave result (8.138), extends readily to the
axisymmetric body of revolution. The result is

Dw = −ρ∞V 2
∞

∫∫
φz φx dS (8.152)



Compressible Aerodynamic Flows 189

where the integral area element dS is on a cylindrical “pipe” surface surrounding the body and aligned with
the freestream. The potential ϕ can be obtained by the line-source superposition integral (8.145). Ashley
and Landahl [50] combine these two expressions and give after some manipulation

Dw = −ρ∞V 2
∞

4π

∫ �

0

∫ �

0

dΛ

dx′
(x′)

dΛ

dx′′
(x′′) ln

∣∣x′ − x′′
∣∣ dx′ dx′′ (8.153)

where body extends over x = 0 . . . �. Note that the drag depends on the square of dΛ/dx = d2A/dx2,
so that low wave drag dictates bodies which have smooth cross-sectional area distributions. This is one
example of Whitcomb’s supersonic area rule, discussed in detail by R.T. Jones [61].

Bodies with minimum wave drag

Following Sears [62] and Haack [63], the line source model developed above will now be applied to a body
of length �, with some arbitrary area distribution A(x). Using the trigonometric coordinate ϑ(x)

x =
�

2
(1− cos ϑ) , dx =

�

2
sinϑ dϑ (8.154)

the line source strength or equivalently dA/dx is expanded in a Fourier sine series.

Λ(x) =
dA

dx
= �

∞∑
n=2

Bn sinnϑ (8.155)

The area distribution A(x) and the total body volume V can then also be given in terms of the same series
coefficients.

A(x) =

∫ x

0

dA

dx
dx =

�

2

∫ ϑ

0

dA

dx
sinϑ dϑ =

�2

2

∞∑
n=2

Bn

∫ ϑ(x)

0
sinnϑ sinϑ dϑ

=
�2

4

∞∑
n=2

Bn

(
sin(n−1)ϑ

n−1
− sin(n+1)ϑ

n+1

)
(8.156)

V =

∫ �

0
A(x) dx =

�

2

∫ π

0
A(ϑ) sinϑ dϑ =

π�3

16
B2 (8.157)

The n = 1 series term has been excluded because it gives a finite base area at x = �. In reality the large
separated wake generated by the base area would make the present potential-flow model results not very
realistic for that case.

Substitution of the source strength expansion (8.155) into the wave drag expression (8.153) gives the fol-
lowing result, obtained by Sears.

Dw =
π

8
ρ∞V 2

∞�2
∞∑
n=2

nB2
n

=
1

2
ρ∞V 2

∞

128

π

V2

�4

[
1 +

3

2

(
B3

B2

)2

+
4

2

(
B4

B2

)2

+ . . .

]
(8.158)

Comparing the volume expression (8.157) with the wave drag expression (8.158) we see that the lowest
wave drag for a given body volume V and length � is obtained by setting B3 = B4 . . . = 0 and leaving
only B2 nonzero. The resulting shape is the Sears-Haack body, shown in Figure 8.25. Note that its wave
drag is independent of the freestream Mach number, provided of course that M∞ is sufficiently far into the
supersonic range as required by the assumed supersonic PG flow model.

The very strong dependence of wave drag on the volume and the inverse length is the primary reason why
the design of supersonic aircraft naturally favors a long and slender layout with minimal volume. These
design drivers are not present in subsonic aerodynamics.
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Figure 8.25: Sears-Haack body shape R(x) which gives minimum supersonic wave drag for given
length and volume. Corresponding body cross-sectional area A = πR2 is also shown.

8.8.6 Supersonic lifting flows
Supersonic lift singularities

To represent the flow over lifting surfaces we need supersonic z-doublets which are derived from the source.

φ̂Kz (r ;M∞) ≡ ∂φ̂Σ

∂z
=

⎧⎨⎩
1

2π

−β2z

h3
, x > β

√
y2+z2

0 , x < β
√

y2+z2
(8.159)

The corresponding y-doublet for modeling sideforce can also be considered. But this has exactly the same
form as the z-doublet with y and z swapped, so there is no need to derive this separately.

We now define the potential of a semi-infinite z-doublet line extending downstream from the origin, which
can be considered as a supersonic horseshoe vortex with an infinitesimal width dy.

φ̂Γz (x,y,z ;M∞) ≡
∫ x−β

√
y2+z2

0
φ̂Kz (x−x′,y,z ;M∞) dx′

=
−β2z

2π

∫ x−β
√

y2+z2

0

dx′

[(x−x′)2 − β2(y2+z2)]3/2

=
1

2π

z

y2+z2
x

h
(8.160)

The upper integration limit over the doublet strip is the x′ point where the strip intersects the field point’s
upstream Mach cone. This can be determined as the x′ point where the hyperbolic radius from the field
point is zero.

h(x−x′,y,z ;M∞) ≡
√

(x−x′)2 − β2(y2+z2) = 0

→ x′ = x− β
√

y2+z2

The alternative positive-root solution x′ = x+ β
√

y2+z2 is not used, since this corresponds to the down-
stream Mach cone, and any doublet in this Mach cone has no influence on the field point.

As an example application of superposition of infinitesimal horseshoe vortices (8.160), the potential of a
general unswept lifting line extending from y =−b/2 to y = b/2 is obtained by superposition of this unit
solution across the span, with the appropriate y-coordinate shift.

φ(x,y,z ;M∞) =

∫ y2

y1

Γ(y′) φ̂Γz (x,y−y′,z ;M∞) dy′

=
1

2π

∫ y2

y1

Γ(y′)
z

(y−y′)2+z2
x√

x2 − β2[(y−y′)2+z2]
dy′ (8.161)
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Figure 8.26: Integration over each doublet strip is restricted to region inside the field point’s up-
stream Mach cone.

The y1 and y2 integration limits are obtained by first finding the Mach cone where h(x,y−y′,z ;M∞)=0, which
gives y′=y± at the Mach cone. These are then clipped to within the lifting-line tips at ±b/2.

y+ ≡ y +
√

(x/β)2−z2

y− ≡ y −
√

(x/β)2−z2

ymax(x,y,z ;M∞) = max {−b/2 , min[ b/2 , y+ ]}
ymin(x,y,z ;M∞) = max {−b/2 , min[ b/2 , y− ]}

(8.162)

For the specific case of a uniform Γ(y)= constant distribution, which corresponds to one horseshoe vortex
for the whole wing, the superposition integral (8.161) evaluates to the following form.

φ(x,y,z ;M∞) =
Γ

2π

z

|z|

{
arctan

[
x

|z|
ymax − y√

x2 − β2[(ymax−y)2 + z2]

]

− arctan

[
x

|z|
ymin − y√

x2 − β2[(ymin−y)2 + z2]

]}
(8.163)

This is shown in Figure 8.27 over yz planes at three downstream x locations, and compared to the subsonic
version for M∞=0.

Two limiting cases are:

• Near the lifting line, such that with y± inside the tips (not clipped to ±b/2) and x being close to the
z-axis and within the Mach lines from the vortex at the origin, we have the α solution of the 2D airfoil
in the limit of zero chord.

φ(x,y,z ;M∞) =
Γ

2π

z

|z| {arctan[+∞]− arctan[−∞]} =
Γ

2

z

|z| (8.164)

This is shown in Figure 8.27 for x=0.5 on the left.
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Figure 8.27: Potential field over yz planes behind a supersonic (left) and subsonic (right) horseshoe
vortex. Away from the Mach cone, the two flows become the same downstream.

• Far downstream in the Trefftz plane, fairly close to the x axis so that x2 � y2+z2, we have the
incompressible flow about two 2D vortices of strength ±Γ, located at (y, z) = (±b/2, 0).

x√
x2 − β2(y2+z2)

	 1

φ(x,y,z ;M∞) 	 Γ

2π

{
arctan

[
b/2− y

z

]
+ arctan

[
b/2 + y

z

]}
(8.165)

Hence, the Trefftz plane flow here is the same as with an incompressible freestream, as shown in
Figure 8.27 for x=8. For the intermediate downstream distance x=2, The Trefftz plane flow appears
subsonic close to the trailing legs, but supersonic farther away near the Mach cone trace.

Wave drag of a lifting surface

The flow over a general thin supersonic lifting wing can be obtained by superposition of infinitesimal super-
sonic horseshoe vortices (8.160) over its surface. The integration limits of such superpositions must obey
the Mach cone dependence requirements, which can become complex for general wing planforms. One
approach which handles these requirements in a systematic manner is the method of Evvard and Krasil-
shchikova, as summarized by Ashley and Landahl [50].



Compressible Aerodynamic Flows 193

The supersonic wave system created by the horseshoe vortex distribution will in general produce a wave
drag due to lift, much like the line source representing a body produced a wave drag due to volume or
thickness. Jones [64] determined the following minimum wave drag due to lift, which is obtained by a wing
which has elliptical loading both in the spanwise and in the chordwise directions.

Dw =
L2

1
2ρ∞V 2

∞ πb2

(√
1 +

π2

16
AR2β2 − 1

)
(8.166)

Combining this with the classical induced-drag relation (5.71) for the elliptical-loading case gives the total
supersonic drag due to lift.

Dw +Di =
L2

1
2ρ∞V 2

∞ πb2

√
1 +

π2

16
AR2β2 (8.167)

This can also be given in the usual non-dimensional form using the lift and drag coefficient definitions.

CDw + CDi =
C2
L

πAR

√
1 +

π2

16
AR2β2 (8.168)
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Figure 8.28: Wave+induced drag of supersonic wing with elliptical spanwise and chordwise loading.

The last term in (8.167) proportional to AR2 favors low aspect ratios so that the lift is distributed over a
large chord. This is in direct contrast to the subsonic case, where the chordwise loading distribution is
immaterial to drag due to lift. One practical consequence is that efficient supersonic configurations tend to
favor relatively low aspect ratios in order to spread out the lift load in the chordwise direction.

8.9 Transonic Flows

8.9.1 Onset of transonic flow
Any aerodynamic body has a maximum local velocity and local Mach number value somewhere near the
surface which is greater than the freestream. Hence, as the freestream Mach number over a particular
geometry at some angle of attack is gradually increased from small values, the maximum local Mach number
max(M) will eventually reach and then exceed unity while the freestream is still subsonic, or M∞<1. The
freestream Mach value M∞ when the threshold max(M) = 1 is crossed is called the critical Mach number
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for that particular geometry and angle of attack. For potential flow over the body, the local Mach number
field has the functional form M (r ;M∞), so that the defining condition for the critical Mach can be stated as

max
r

[M (r ;Mcrit) ] = 1

where in practice only the surface points r need to be examined for the maximum local Mach number. An
equivalent criterion is in terms of the sonic pressure coefficient, shown in Figure 8.29, which is defined from
the Cp(M ;M∞) function (8.11) with M=1 substituted.

C∗
p (M∞) ≡ Cp(1 ;M∞) =

2

γM2
∞

⎧⎨⎩
[
1 + γ−1

2 M2
∞

1 + γ−1
2

]γ/(γ−1)
− 1

⎫⎬⎭ (8.169)

An alternative definition for the critical Mach number is then defined as follows.

min
r

[Cp(r ;Mcrit) ] = C∗
p (M∞)
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Figure 8.29: Critical pressure coefficient vs. freestream Mach, for air (γ=1.4).

At the typical flight Mach numbers M∞ 	 0.7 . . . 0.85 of jet transport aircraft, only modestly negative local
Cp values of −0.75 . . .−0.3 are required to reach a local M=1. Consequently, such aircraft necessarily have
transonic flow over their wings. Figure 8.30 shows computed Cp(x) distributions for a typical “supercritical”
airfoil designed to operate in the transonic condition, which occurs for M∞ > Mcrit = 0.71 for this airfoil
at this angle of attack. Larger angles of attack make the upper-surface Cp values more negative, and hence
decrease Mcrit. In general, each airfoil will therefore have some Mcrit(α) or Mcrit(c�) dependency, depending
on whether α or c� is being held fixed as M∞ is varied.

The supersonic region over the airfoil which appears in transonic flow is typically terminated by a normal
shock wave, as described in Section 8.3 earlier in this chapter. The shock for the RAE 2822 airfoil for the
M∞ = 0.76 case is shown in Figure 8.31, along with the Mach waves or characteristics (see Section 8.8.2).
These characteristic lines are defined by (8.133), except that the characteristic slope β is defined using the
local supersonic M values ahead of the shock rather than M∞.

As M∞ is increased beyond Mcrit, the shock wave strengthens and causes a very rapid increase in the overall
profile drag. This is due to the increase in the shock’s own wave drag (see Section 8.3), and also due to the
boundary layer being subjected to the intense adverse pressure gradient of the shock wave which increases
the boundary layer’s downstream momentum defect. Consequently, economical transonic operation is fea-
sible at a freestream Mach which is only slightly beyond Mcrit. The consequences for swept wing design
will be discussed further in Section 8.9.3.
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Figure 8.30: Cp(x) distributions over RAE 2822 airfoil at α = 1◦, for a range of freestream Mach
numbers M∞. The C∗

p levels for each M∞ are also shown as dotted lines. The critical Mach number
is Mcrit	0.71, with a shock wave forming for M∞>Mcrit.

Figure 8.31: Mach isocontours and Mach waves over RAE 2822 airfoil at α=1◦ and M∞=0.76 .
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8.9.2 TSD equation analysis
The simplest description of transonic flow is provided by the TSD equation (8.59) derived earlier, which can
be re-written in the following form.

Sφxx + φyy + φzz = 0 (8.170)

S(r) ≡ 1−M2
∞ − (γ+1)M2

∞ φx 	 1−M2 (8.171)

Superficially, the TSD equation has the same form as the PG equation, except the global coefficient 1−M2
∞

is replaced by the local coefficient S(r). This is approximately the local 1−M2 value, to first order in
the perturbation x velocity φx. The assumption M∞	1 was also made to slightly further simplify the γ+1
factor in the higher-order φx term. This S is in effect a “sonic discriminator,” since S>0 in subsonic regions
which have a Laplace-like behavior, and S<0 in supersonic regions which have a wave-like behavior. The
TSD equation in the transonic regime is therefore a PDE of mixed type. The sonic line (or sonic surface in
3D) which forms the boundary of the supersonic zone is the M=1 or S=0 isocontour.

It’s useful to see how the nonlinearity of the TSD equation is capable of representing shock waves. To
examine this we consider the 2D TSD equation written in divergence form,[

(1−M2
∞)φx − γ+1

2 M2
∞ φ2

x

]
x
+

[
φz

]
z
= 0 (8.172)

and integrate this over a small distance x0 . . . x, as shown in Figure 8.32.

xx0

Cp
∗

Cp

Cp

Cp
−

+

(supersonic)

(subsonic)

sonic

possible solutions

Figure 8.32: Simplified TSD solution admits a subsonic and a supersonic flow. A discontinuous
jump between them at any location can be interpreted as a normal shock.

We will assume that φzz 	 A is constant, which corresponds to the streamlines being convergent (A < 0)
or divergent (A > 0).∫ x

x0

[
(1−M2

∞)φx − γ+1
2 M2

∞ φ2
x

]
x
dx +

∫ x

x0

A dx = 0

(1−M2
∞)φx − γ+1

2 M2
∞ φ2

x = B −Ax (8.173)

The integration constant B will depend on A and also on the value of φx at the initial point x0. The above
relation (8.173) is a quadratic equation for the perturbation speed φx, or equivalently Cp = −2φx, which
has the following solution.

Cp(x) = C∗
p ±

√
(C∗

p )
2 + C (8.174)

where C(x) =
8

γ+1

B −Ax

M2
∞

This admits two distinct solutions, C+
p > C∗

p (subsonic) and C−
p < C∗

p (supersonic), which can be inter-
preted as the flows on the two sides of a normal shock. This simplified analysis does not predict where the
shock will occur, which in an actual TSD solution would be implicitly determined by the freestream Mach
number and the overall airfoil geometry.
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8.9.3 Transonic airfoils
Airfoil performance characterization

For a compressible airfoil flow, both cd and c� depend on the three parameters α,M∞, Re∞. But when
examining airfoil performance it’s more useful to combine these into the form,

cd(c�,M∞,Re∞)

in which α is a dummy parameter. We can now consider individual drag polars at fixed M∞, or alternatively
individual Mach drag-rise curves at fixed c�. These two types of slices through the {cd, c�,M∞} airfoil
parameter space are sketched in Figure 8.33. To allow application to a swept wing, the cd is actually broken
down into separate friction and pressure drag components cdf and cdp , with the split either estimated or
computed directly. Actual computed curves are shown in Figure 8.34.

cd

cl

M

fixed−cl  drag rise curve

fixed−Mach  polars

Figure 8.33: Two types of slices through the {cd, c�,M∞} airfoil parameter space.

Figure 8.34: Computed polars and corresponding Mach drag-rise curves for a transonic airfoil.

Strictly speaking all these drag coefficients also depend on Re∞, but with the fully-turbulent flows found on
large jet aircraft the drag coefficient scales roughly as cd ∼ log(Re∞)−2, which is a quite weak dependence.

Airfoil performance drivers

The fuel weight required by an aircraft to fly a specified range R is given by the Breguet relation,

Wfuel = WZF

[
exp

(
CD

M 1/2
∞ CL

TSFC

M 1/2
∞

R

a∞

)
− 1

]
(8.175)
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where WZF is the zero-fuel (landing) weight, and TSFC is the engine thrust-specific fuel consumption.
The particular grouping TSFC/M 1/2

∞ is chosen because for modern turbofan engines this ratio is nearly
independent of M∞ (i.e. TSFC varies as M 1/2

∞ ), so that the remaining factor CD/M
1/2
∞ CL isolates and

measures the aircraft’s aerodynamic performance for fuel economy. It is therefore of great interest to find
the best airfoil, CL, M∞, and wing-sweep combination which minimizes this parameter.

Optimum unswept wing

It is useful to first consider an unswept wing. We therefore assume

c� = CL

CDwing
= cd(c�,M∞)

CD = CDwing
+

C2
L

πAR
+ CDrest

where CDwing
is the wing’s profile+wave drag, and CDrest is the profile drag of the remaining fuselage, tail,

and nacelle components. The objective is to find the optimum CL,M∞ combination which minimizes the
CD/M

1/2
∞ CL fuel-burn parameter. For a numerical example we can pick

AR = 10 , CDrest = 0.025

which are typical for modern jet transports. Using the 2D 12%-thick airfoil cd Mach drag-rise sweeps
shown in Figure 8.34, the corresponding fuel-economy parameters are shown in Figure 8.35. The optimum
combination is roughly at

CL = 0.8 , M∞ = 0.725 (unswept-wing optimum)

although this will also depend on the airfoil thickness. A larger thickness will typically optimize to a lower
CL and a lower M∞, with a corresponding increase in the fuel-burn parameter. However, a thicker wing is
structurally favorable and hence lighter, so that the WZF factor in the Breguet relation (8.175) may overcome
this aerodynamic drawback and give a net benefit.
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Figure 8.35: Fuel-burn parameter versus M∞, CL for an unswept wing.

Swept-wing airfoil characterization

The earlier analysis of an infinite swept wing in Section 8.6.3 indicated that the lift depends only on the
perpendicular velocity and Mach component V⊥ = V∞ cos Λ and M⊥ = M∞ cos Λ. The same arguments
apply to the airfoil’s boundary layers, provided we ignore the spanwise flow’s increase of the total-velocity



Compressible Aerodynamic Flows 199

Reynolds number, which is reasonable for fully-turbulent flow. Consequently, the 2D airfoil lift-coefficient
characteristics shown in Figure 8.34 apply to a swept wing via the following relations.

M⊥ = M∞ cos Λ (8.176)

c� = CL⊥
= CL/ cos

2Λ (8.177)

cd = cd(c� ; M⊥) (8.178)

To obtain the wing’s profile drag coefficient CDwing
from the 2D-section cd value we first break down the

latter into the friction and pressure components,

cd = cdf + cdp (8.179)

with a roughly 2
3 ,

1
3 split, respectively, being typical for transonic airfoils.

The velocity within the 3D boundary layer on the wing and hence the surface skin friction vectors τw will be
mostly aligned with the outer potential flow, which is on average parallel to the freestream velocity V∞ and
hence the aircraft’s x̂ direction, as indicated in Figure 8.36. This skin friction’s magnitude must also scale
with the local potential-flow dynamic pressure, which scales with the freestream dynamic pressure 1

2ρ∞V 2
∞ .

This gives the following estimate for the wing’s friction drag vector.

Df x̂ =

∫∫
τw dS 	 1

2ρ∞V 2
∞ S cdf x̂ (8.180)

In contrast, the pressure forces act along the wing surface normal vectors n̂ which lie in the plane perpen-
dicular to the wing, so the pressure drag vector must be along the local chordwise vector x̂′ which lies in this
plane. It must also scale as 1

2ρ∞V 2
⊥ , since it must vanish in the limit of purely-spanwise flow at 90◦ sweep.

Dp⊥ x̂′ =

∫∫
−pn̂ dS 	 1

2ρ∞V 2
⊥ S cdp x̂

′ = 1
2ρ∞V 2

∞ S cdp cos2Λ x̂′ (8.181)

Λ V

V

Df

Dp

shock
potential flow
  streamline

Cp c

M fdc

dc p

Airfoil Plane

xx

Figure 8.36: Profile drag of swept wing estimated from airfoil-plane friction and pressure-drag
coefficients.

The total wing profile drag and corresponding drag coefficient are then

Dwing =
(
Df x̂+Dp⊥x̂

′
)
· x̂ = Df + Dp⊥ cos Λ (8.182)

CDwing
≡ Dwing

1
2ρ∞V 2

∞ S
= cdf + cdp cos3Λ (8.183)
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so that the wing’s overall profile-drag to lift ratio is

CDwing

CL
=

cdf + cdp cos3Λ

c� cos2Λ
(8.184)

which increases monotonically with sweep if 2cdf > cdp which is invariably the case in the absence of sig-
nificant flow separation. Hence, wing sweep by itself does not improve the wing’s drag/lift ratio, and in fact
decreases it. The fuel-burn benefit from sweep instead originates from the speed/efficiency characteristics
of jet engines, considered next.

Optimum swept wing

Sweep introduces another design parameter into the wing design space, which is now {CL,M∞,Λ}, and
also includes the airfoil thickness if different airfoils are being considered. The airfoil coefficients with the
above sweep corrections give the fuel-burn parameter in the form

CD

M 1/2
∞ CL

=
cdf + cdp cos3Λ + (c� cos

2Λ)2/(πAR) + CDrest

M 1/2
∞ c� cos2Λ

(8.185)

which is shown in Figure 8.37. The optimum design-parameter combination is now

c� = 0.9 , M∞ = 0.825 , Λ = 30◦ (swept-wing optimum)

and the corresponding fuel-burn parameter value of about 0.078 is smaller than the 0.080 value for the
unswept-wing case shown in Figure 8.35 for a typical supercritical airfoil. The reduction is modest, but
perhaps more importantly it occurs at a 0.825/0.725 − 1 = 14% greater speed which itself has economic
benefits.

The optimum design parameters found here for the swept-wing case are quite close to what’s seen on most
modern jet transports, with the exception of the c� value. In practice, lower values of c� 	 0.75 are used for
several reasons: 1) Because of local c� reductions near the wingtips, wing root, and over the fuselage, the
actual airplane CL is necessarily smaller than the infinite swept-wing value c� cos

2Λ. 2) Structural weight
considerations favor thicker airfoils than what this aerodynamic-only optimization indicates, and thicker
transonic airfoils have lower optimum c� values.
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Figure 8.37: Fuel-burn parameter versus M∞, c�,Λ.



Chapter 9

Introduction to Flight Dynamics
This chapter will treat the key concepts and formulations used in the discipline of flight dynamics and
control. The primary focus here will be on the aerodynamic characterization of the aircraft, as required for
flight dynamics applications. For a complete treatment of the subject, see Etkin [65] and Nelson [66].

9.1 Frames of Reference
Description of body or fluid positions, velocities, and rotation rates requires a frame of reference for these
quantities. For unsteady aerodynamics and flight dynamics, two distinct frames of reference are useful:

• An inertial “Earth” frame, either fixed to the Earth or translating uniformly relative to the Earth.

• The non-inertial “body” frame, typically fixed to the aerodynamic body of interest.

Figure 9.1 illustrates the distinction between the two frames. For steady aerodynamics the body frame is
most natural, although the Earth (or airmass) frame is also useful as in the case of Trefftz-plane theory
treated in Chapter 5. For unsteady aerodynamics the Earth frame is more natural because it is inertial.

U
body velocity freestream velocity

V −U=

Observer in earth frame Observer in body frame

fluid velocityfluid velocity

Figure 9.1: Body moving at velocity U through fluid, as seen in the Earth and body frames.

9.2 Axis Systems
The orientation of the axis system used to quantify any vector or tensor is arbitrary. Common choices are to
align one axis (e.g. the x axis) with either a body feature such as an airfoil chordline, or with the freestream
direction. If the body is only translating, a common axis system can be used for all quantities. However, if
the body is rotating, then two axis systems naturally arise:

• “Earth” axes xe, ye, ze fixed to the ground. These are non-rotating (the Earth’s rotation is neglected).
• “Body” axes xb, yb, zb fixed to the body. These rotate along with the body relative to inertial space.

Note that “frame” and “axes” are distinct concepts. For example, the aircraft position, velocity, and rotation
rate Ro,U,Ω treated in Chapter 7 were all defined in the Earth frame. But Ro is usually expressed via its
Earth-axes xe, ye, ze components, while U,Ω are usually expressed via the aircraft’s body-axes xb, yb, zb

components. Relating them requires the axis transformation relations developed in Appendix F.
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9.3 Body Position and Rate Parameters

Application of the equations of fluid motion in unsteady or quasi-steady flow situations requires specification
of the velocity of every point on the body surface. This is parameterized by the inertial-frame quantities,

U(t) velocity vector of body reference point O
Ω(t) rotation-rate vector of body

so that a point P at some location rp on the body relative to point O has the following velocity.

Up = U + Ω×rp

In aircraft flight dynamics applications the atmosphere is occasionally specified to have some nonuniform
“gust” velocity field Vgust(R,t), whose effect on the forces on the aircraft is to be determined. To evaluate
this gust velocity at each point rp on the aircraft requires knowing that point’s Earth position within the gust
field. This is parameterized by

Ro(t) position of body reference point O
φ, θ, ψ(t) body roll, elevation, and heading Euler angles

which are sketched in Figure 9.2. The Earth position of point P and the gust velocity at that point can then
be obtained from the Vgust(R,t) field.

Rp(r,t) = Ro(t) + rp (9.1)

(Vgust)p = Vgust(Rp,t) (9.2)

R

Body Axes
Body Axes

xe

xb

xe

ez

ey

zb

yb

xb ΩΩ

Inertial (Earth) Axes
Inertial (Earth) Axes

U

Euler
angles

r

o

PpO

P

M

F

gg
position vector
of body reference point O

relative
position vector
of local point

φ

θ
ψ

Figure 9.2: Aircraft motion parameters. Total aerodynamic force F and moment M are also shown.

Euler angles define transformation matrices ¯̄T
e
b or ¯̄T

b
e between body and Earth axes, developed in

Appendix F.

9.4 Axis Parameterization and Conventions
The body reference-point position vector Ro is best given by its components along the inertial Earth axes,
shown as xe, ye, ze in Figure 9.2. In contrast, the local position vector r, and the body velocity and rotation
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rate vectors U,Ω are best given in the body axes xb, yb, zb, since these are also used to describe the flow
about the body, e.g. via the velocity field V(r,t). To translate the individual components of any vector, such
as U, from body to Earth axes, we apply the general vector transformation (F.1) derived in Appendix F.

Ue ≡

⎧⎨⎩
U e
x

U e
y

U e
z

⎫⎬⎭ =

⎡⎣ ¯̄T
e

b

⎤⎦⎧⎨⎩
U b
x

U b
y

U b
z

⎫⎬⎭ ≡ ¯̄T
e

bU
b (9.3)

The direction-cosine transformation matrix ¯̄T
e
b is now formed as the product of three simple rotation matri-

ces for the individual Euler angles in the standard sequence −φ, −θ, −ψ:

¯̄T
e

b =

⎡⎣cosψ −sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦⎡⎣ cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

⎤⎦⎡⎣ 1 0 0
0 cosφ −sinφ
0 sinφ cosφ

⎤⎦

=

⎡⎢⎣cos θ cosψ sinφ sin θ cosψ−cosφ sinψ cosφ sin θ cosψ+sinφ sinψ

cos θ sinψ sinφ sin θ sinψ+cos φ cosψ cosφ sin θ sinψ−sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

⎤⎥⎦ (9.4)

The reciprocal conversion matrix ¯̄T
b
e is composed of the reverse rotation sequence ψ, θ, φ. But this is also

the inverse of ¯̄T
e
b , which is simply its transpose as derived in Appendix F for the general case.

¯̄T
b

e = ¯̄T
e

b

−1

= ¯̄T
e

b

T

(9.5)

As an application example, consider equations (9.1) and (9.2) used to obtain the gust velocity at an aircraft
point P. The aircraft position Ro and the Vgust(R,t) function are typically provided in Earth axes, i.e. as Re

o

and Ve
gust(R

e,t), while the point P vector rp is known in body axes, as rbp. Expressions (9.1) and (9.2) would
therefore need to be evaluated as

Re
p = Re

o + ¯̄T
e
b r

b
p (9.6)

Vb
gustp

= ¯̄T
b

eV
e
gust(R

e
p,t) (9.7)

with the final result Vb
gustp

being in the body axes. This would then be usable for calculation of body forces
and moments which are typically performed in the body axes.

9.5 Flow Angles
The aircraft’s velocity U components in the body axes can be defined in terms of its magnitude V∞ and the
angles of attack α and sideslip angle β, or vice versa. In the standard convention these relations are

Ub =

⎧⎨⎩
U b
x

U b
y

U b
z

⎫⎬⎭ = −Vb
∞ = V∞

⎧⎨⎩
cosα cos β

sin β

sinα cos β

⎫⎬⎭ (9.8)

V∞ =
√

(U b
x )

2 + (U b
y )

2 + (U b
z )

2

α = arctan
(
U b
z /U

b
x

)
β = arctan

(
U b
y /

√
(U b

x )
2 + (U b

z )
2

) (9.9)

so that {U b
x , U

b
y , U

b
z } and {V∞, α, β} are equivalent alternative parameter sets, related by the reciprocal

relations (9.8) and (9.9).
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9.6 Aircraft Kinematic Relations
This section derives the kinematic equations of aircraft motion used in flight dynamics and control. See
Etkin [65] and Nelson [66] for further details.

9.6.1 Aircraft position rate
The rate of the position Re

o in Earth axes equals its velocity Ue in Earth axes.

d

dt
Re

o = Ue (9.10)

In practice this is expressed as

d

dt
Re

o = ¯̄T
e
bU

b (9.11)

since the velocity is defined as Ub in the body axes. Integration of (9.11) to obtain the aircraft trajectory
Ro(t) therefore requires not only the aircraft velocity Ub(t), but also the concurrent Euler angles φ, θ, ψ(t)

which are needed to compute the transformation matrix ¯̄T
e
b(t) at each step in time.

9.6.2 Aircraft orientation rate
Appendix F derives the expression (F.7) for the rotation-rate matrix Ω

⇒e. Choosing the (3,2), (1,3), (2,1)
elements of this expression and stacking them in that order as a vector gives a relation between the rotation
rate’s Earth-axis components and the Euler angle rates.⎧⎪⎨⎪⎩

Ωe
x

Ωe
y

Ωe
z

⎫⎪⎬⎪⎭ =

⎡⎣ ¯̄K
e

b

⎤⎦⎧⎨⎩
φ̇

θ̇

ψ̇

⎫⎬⎭ (9.12)

where ¯̄K
e
b =

⎡⎢⎣ cosψ cos θ −sinψ 0

sinψ cos θ cosψ 0

− sin θ 0 1

⎤⎥⎦ (9.13)

Pre-multiplying (9.12) by ¯̄T
b

e puts this result in body axes.⎧⎨⎩
Ωb
x

Ωb
y

Ωb
z

⎫⎬⎭ =

⎡⎣ ¯̄T
b

e

⎤⎦
⎧⎨⎩

Ωe
x

Ωe
y

Ωe
z

⎫⎬⎭ =

⎡⎣ ¯̄T
b

e

⎤⎦⎡⎣ ¯̄K
e
b

⎤⎦
⎧⎨⎩

φ̇

θ̇

ψ̇

⎫⎬⎭ (9.14)

Evaluating the matrix-matrix product above gives

Ωb =

⎧⎪⎨⎪⎩
Ωb
x

Ωb
y

Ωb
z

⎫⎪⎬⎪⎭ =

⎡⎢⎣ 1 0 − sin θ

0 cosφ sinφ cos θ

0 −sinφ cosφ cos θ

⎤⎥⎦
⎧⎪⎨⎪⎩

φ̇

θ̇

ψ̇

⎫⎪⎬⎪⎭ (9.15)

which can then be inverted to give the rate equation for the Euler angles.

d

dt

⎧⎪⎨⎪⎩
φ

θ

ψ

⎫⎪⎬⎪⎭ =

⎡⎢⎣ 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/cos θ cosφ/cos θ

⎤⎥⎦
⎧⎪⎨⎪⎩

Ωb
x

Ωb
y

Ωb
z

⎫⎪⎬⎪⎭ (9.16)
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9.7 Dynamics Relations
9.7.1 Linear momentum
The linear momentum equation (Newton’s Second Law) for an aircraft, properly expressed in the inertial
Earth frame and Earth axes is

Fe + mgge = m
dUe

dt
(9.17)

where the total force acting on the aircraft is the aerodynamic force F plus the gravity force mgg, shown
in Figure 9.2. The equivalent form in the more convenient body axes is obtained using the transformation
matrix, by substituting Fe = ¯̄T

e
bF

b, etc., and performing a few manipulations as follows.

¯̄T
e

b F
b + m ¯̄T

e

b gg
b = m

d

dt
( ¯̄T

e

bU
b)

= m
(
¯̄T
e
bU̇

b +
˙̄̄
T

e
bU

b
)

= m
(
¯̄T
e

bU̇
b +Ω

⇒e ¯̄T
e

bU
b
)

= m
(
¯̄T
e

bU̇
b +Ω

⇒e
Ue

)
= m

(
¯̄T
e

bU̇
b + (Ω×U)e

)
(9.18)

Relation (F.9) has been used to replace ˙̄̄
T

e
b in the third step above. Premultiplying the final result by ¯̄T

b

e

gives the linear momentum equation for the aircraft with all quantities specified in the body axes.

Fb + mggb = m
(
U̇b + Ωb×Ub

)
(9.19)

9.7.2 Angular momentum
The angular momentum equation for the aircraft is

Me =
dHe

dt
(9.20)

He = ¯̄I
e
Ωe + he (9.21)

where the total angular momentum vector H has been introduced, with h being any onboard angular mo-
mentum due to propellers, turbines, etc. The total aerodynamic moment M, shown in Figure 9.2, is assumed
to be taken about the center of mass, and ¯̄I is the mass moment of inertia about the center of mass. To put
the angular momentum equation (9.20) in the more convenient body axes, we follow the same procedure as
for the linear momentum equation above, except that F is now replaced by M, and mU is replaced by H.

¯̄T
e

b M
b =

d

dt
( ¯̄T

e

bH
b)

...

= ¯̄T
e

bḢ
b + (Ω×H)e (9.22)

Premultiplying the final result by ¯̄T
b

e, and then replacing Hb by ¯̄I
b
Ωb + hb gives the angular momentum

equation for the aircraft in body axes.

Mb = ¯̄I
b
Ω̇

b
+ Ωb×

(
¯̄I
b
Ωb + hb

)
(9.23)
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9.8 Flight Dynamics Formulation

9.8.1 Variable and vector definitions
In this section we will adopt the following simplified notation for the aircraft motion parameters and aero-
dynamic forces and moments. This notation is fairly standard in the discipline of flight dynamics, stability,
and control.

Re =

⎧⎨⎩
xe

ye

ze

⎫⎬⎭ Ub =

⎧⎨⎩
u
v
w

⎫⎬⎭ Ωb =

⎧⎨⎩
p
q
r

⎫⎬⎭ Fb =

⎧⎨⎩
X
Y
Z

⎫⎬⎭ Mb =

⎧⎨⎩
L
M
N

⎫⎬⎭
The components of the first three vectors above, together with the three Euler angles, are grouped in the

following state vector with 12 components:

x(t) = { xe ye ze φ θ ψ u v w p q r }T (9.24)

As treated in Section 6.3, the aerodynamic forces X,Y,Z and moments L,M,N are functions of this state
vector, and also of the control vector δ, which for a typical aircraft consists of aerodynamic control surface
deflections and engine forces.

δ(t) = { δa δe δr δf δT }T (9.25)

The first four components correspond to aileron, elevator, rudder, and flap deflections, and the last compo-
nent is an engine-thrust variable. Unconventional aircraft may have other types of control variables.

9.8.2 General equations of motion
The 12 state vector components (9.24) are governed by 12 ODEs in time. These are the six kinematic
equations for the aircraft position rate (9.11) and the Euler angle rates (9.16), and the six dynamic equations
for the linear momentum rate (9.19) and the angular momentum rate (9.19). Using the new simplified
notation defined above, these 12 equations are written out fully as follows.

ẋe = (cos θ cosψ)u + (sinφ sin θ cosψ − cosφ sinψ) v + (cosφ sin θ cosψ + sinφ sinψ)w
ẏe = (cos θ sinψ)u + (sin φ sin θ sinψ + cosφ cosψ) v + (cosφ sin θ sinψ − sinφ cosψ)w
że = (− sin θ)u + (sinφ cos θ) v + (cosφ cos θ)w

(9.26)

φ̇ = p + q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ − r sinφ

ψ̇ = q sinφ/ cos θ + r cosφ/ cos θ

(9.27)

X − mg sin θ = m (u̇ + qw − rv)
Y + mg sinφ cos θ = m (v̇ + ru− pw)
Z + mg cosφ cos θ = m (ẇ + pv − qu)

(9.28)

L = Ixx ṗ+ Ixy q̇ + Ixz ṙ + (Izz−Iyy) qr + Iyz (q
2−r2) + Ixz pq − Ixy pr + hz q − hy r

M = Ixy ṗ+ Iyy q̇ + Iyz ṙ + (Ixx−Izz) rp+ Ixz (r
2−p2) + Ixy qr − Iyz qp+ hx r − hz p

N = Ixz ṗ+ Iyz q̇ + Izz ṙ + (Izz−Ixx) pq + Ixy (p
2−q2) + Iyz rp− Ixz rq + hy p− hx q

(9.29)

When the three linear momentum equations (9.28) are multiplied by 1/m, and the three angular momentum
equations (9.29) are multiplied by the inverse of the moment of inertia tensor, ¯̄I

−1
, they become explicit

expressions for the linear and angular velocity rates, u̇ = . . . , ṗ = . . . , etc. All the 12 equations (9.26)–
(9.29) then collectively have the classical state-space evolution form with 12 equation components:

ẋ = f(x, δ) (9.30)



Introduction to Flight Dynamics 207

9.8.3 Linearized equations of motion
The state-space equation system (9.30) above is nonlinear. To make stability and control problems tractable,
these equations are first put into linearized forms. We assume some steady flight in the trim state x0, δ0.
The trim state has ẋ0=0, except for the position rate and heading rate components.

ẋe = ue0 , ẏe = ve0 , że = we
0 , ψ̇ = re0

Straight flight has a zero heading rate re0=0, while steady turning flight has re0 �=0.

In the system equation (9.30), consider small perturbations Δx(t) and Δδ(t) about the trim state, as shown in
Figure 9.3.

x(t) = x0 + Δx(t) (9.31)

δ(t) = δ0 + Δδ(t) (9.32)

ẋ0 + Δẋ = f (x0+Δx , δ0+Δδ) 	 f (x0 , δ0) +
df

dx

∣∣∣∣
x0,δ0

Δx +
df

dδ

∣∣∣∣
x0,δ0

Δδ (9.33)

Since the trim state is physical, it must by itself obey the equations of motion.

ẋ0 = f (x0 , δ0) (9.34)

Subtracting (9.34) from (9.33) gives the linearized equations of motion which govern the small state vector
perturbations,

Δẋ = ¯̄AΔx + ¯̄BΔδ (9.35)

¯̄A ≡ df

dx

∣∣∣∣
x0,δ0

, ¯̄B ≡ df

dδ

∣∣∣∣
x0,δ0

with ¯̄A and ¯̄B being the system Jacobian matrices which depend on the trim state.

x0

x x0(t) = x(t)+ Δ

trim state

actual state initial perturbationlater perturbation

Figure 9.3: Aircraft state considered as a small perturbation from a trim state. Instability is indicated
if the perturbation grows exponentially from an initial perturbation.

9.8.4 Natural response
For the fixed-stick case of no control inputs, Δδ = 0, the general solution of the Linear Time Invariant (LTI)
ODE system (9.35) is a superposition of eight flight-dynamics eigenmodes,

Δx(t) =

8∑
k=1

vk exp(λkt) , λk = σk + iωk (9.36)

where λ1...8 are the nonzero eigenvalues and v1...8 are the corresponding eigenvectors of the Jacobian matrix
¯̄A. Each of the remaining four zero eigenvalues corresponds to a shift in x, y, z, ψ, which has no influence
on the dynamics and hence is excluded from the mode summation.

The magnitude of each ωk and the sign and magnitude of σk indicate the nature of that mode. If ωk=0 then
the motion is monotonic, and if ωk �= 0 then the motion is oscillatory. The latter actually consists of two
complex-pair modes, λ = σ± iω. If σk>0 then that mode is unstable, meaning that the aircraft will exhibit
exponential divergence from the trimmed flight state.
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9.8.5 Symmetry
In the completely general case, the ¯̄A and ¯̄B matrices of the linearized dynamics system (9.35) are nearly
full. But if we have

• geometric symmetry (the airplane is left/right symmetric), and
• aerodynamic symmetry with v0 = p0 = r0 = φ0 = 0, and
• negligible onboard angular momentum, h 	 0,

then ¯̄A and ¯̄B have the following form after the state vector and the equations are re-ordered as indicated.
Zero or nearly zero matrix elements are shown blank.

d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu
Δw
Δq
Δθ

Δv
Δp
Δr
Δφ

Δxe

Δye

Δze

Δψ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · ·
· · · ·
· · · ·
· · · ·

· · · ·
· · · ·
· · · ·
· · · ·

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu
Δw
Δq
Δθ

Δv
Δp
Δr
Δφ

Δxe

Δye

Δze

Δψ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
· · ·
· · ·

· ·
· ·
· ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ΔδT
Δδf
Δδe
Δδa
Δδr

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(9.37)

The first four rows constitute the Longitudinal Dynamics subset, the middle four rows are the Lateral Dy-
namics subset, and the last four rows are the Navigation subset.

The last four navigation variables Δxe,Δye,Δze,Δψ generally have zero matrix columns, even for asym-
metric aircraft. This implies that the matrix will have at least four zero eigenvalues, λ9,10,11,12 =0, whose
corresponding eigenmodes contain only the steady displacements of the four navigation variables.

v9 exp(0t) = { | |Δxe }T

v10 exp(0t) = { | | Δye }T

v11 exp(0t) = { | | Δze }T

v12 exp(0t) = { | | Δψ}T

This is expected from coordinate invariance – the dynamics cannot be affected if the airplane position is
displaced, or if it is pointed in another direction in the plane parallel to the Earth surface. This justifies
excluding these four trivial steady displacement modes from the dynamical mode summation (9.36).

One notable exception occurs if atmospheric property variation is significant over the vertical extent of the
motion. In this case there will be some dependence on the Δze variable, and there will be only three trivial
modes present in the system.

9.9 Aerodynamic Force and Moment Linearizations
Force and moment coefficients have been already defined in Section 6.3. In the most common notation used
in flight dynamics these are

Cx ≡ X/QS

Cy ≡ Y/QS

Cz ≡ Z/QS

C� ≡ L/QSb

Cm ≡ M/QSc

Cn ≡ N/QSb

(9.38)
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where S, b, c are the reference area, span, chord. To avoid conflict with the pitch rate q, the symbol Q is
used to denote the reference freestream dynamic pressure in lieu of the alternative q∞.

Q ≡ 1
2ρV

2 = 1
2ρ(u

2+v2+w2) (9.39)

Perturbations of velocity, flow angles, and normalized rates about the trim state are related to the state
variable perturbations as follows.

Δū ≡ Δu

u0

Δβ ≡ Δ

(
arctan

v√
u2+w2

)
	 Δv

u0

Δα ≡ Δ

(
arctan

w

u

)
	 Δw

u0

Δp̄ ≡ Δ

(
pb

2V

)
	 Δp

b

2u0

Δq̄ ≡ Δ

( qc

2V

)
	 Δq

c

2u0

Δr̄ ≡ Δ

(
rb

2V

)
	 Δr

b

2u0

(9.40)

The dynamic pressure perturbation is linearized in the same manner.

ΔQ = Δ
[
1
2ρ(u

2 + v2 + w2)
]

	 ρ (u0 Δu + v0 Δv + w0 Δw) 	 ρu0 Δu = 2Q
Δu

u0
(9.41)

The coefficient perturbations give the state variable and control variable perturbations via the stability and
control derivatives as follows. Again, blank matrix elements indicate derivatives which are zero for a sym-
metric aircraft in a symmetric trim state flight condition. An asymmetric trim state would have all the
elements nonzero.⎧⎨⎩

ΔCx

ΔCy

ΔCz

⎫⎬⎭ =

⎡⎣Cxu Cxα

Cyβ

Czu Czα

⎤⎦⎧⎨⎩
Δū
Δβ
Δα

⎫⎬⎭ +

⎡⎣ Cxq

Cyp Cyr

Czq

⎤⎦⎧⎨⎩
Δp̄
Δq̄
Δr̄

⎫⎬⎭+

⎡⎣CxδT

Czδf

⎤⎦{ΔδT
Δδf

}
(9.42)

⎧⎨⎩
ΔC�

ΔCm

ΔCn

⎫⎬⎭ =

⎡⎣ C�β

Cmu Cmα

Cnβ

⎤⎦⎧⎨⎩
Δū
Δβ
Δα

⎫⎬⎭ +

⎡⎣C�p C�r

Cmq

Cnp Cnr

⎤⎦⎧⎨⎩
Δp̄
Δq̄
Δr̄

⎫⎬⎭+

⎡⎣C�δa
Cmδe

Cnδr

⎤⎦⎧⎨⎩
Δδa
Δδe
Δδr

⎫⎬⎭ (9.43)

The dimensional force and moment perturbations about the trim state are now expressed in terms of the
coefficient and dynamic pressure perturbations obtained above.

ΔX = Δ (QS Cx) 	 QS
(
2Cx0 Δū + CxαΔα + CxqΔq̄ + CxδT

ΔδT

)
ΔY = Δ (QS Cy) 	 QS

(
CyβΔβ + CypΔp̄ + CyrΔr̄

)
ΔZ = Δ (QS Cz) 	 QS

(
2Cz0 Δū + CzαΔα + CzqΔq̄ + Czδf

Δδf + Czδe
Δδe

) (9.44)

ΔL = Δ (QSbC� ) 	 QSb
(
C�βΔβ + C�pΔp̄ + C�rΔr̄ + C�δa

Δδa
)

ΔM = Δ (QScCm) 	 QSc
(
2Cm0 Δū + CmαΔα + CmqΔq̄ + Cmδe

Δδe
)

ΔN = Δ (QSbCn) 	 QSb
(
Cnβ

Δβ + CnpΔp̄ + CnrΔr̄ + Cnδr
Δδr

) (9.45)

As discussed in Section 6.3.2, aero-lag effects also make the forces and moments depend on the angle of
attack rate. This could be represented above by additional terms with the associated stability derivatives,
such as Czα̇Δα̇, Cmα̇

Δα̇, etc. These are left out here for brevity.
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9.10 Stability Derivative Specification
Aerodynamic force and moment coefficients and their derivatives are usually specified in the stability axes
(xb

′
, zb

′
), which are rotated about yb = yb

′
by the freestream angle of attack α, as shown in Figure 9.4. The

main reason for this axis choice is that the stability derivatives in stability axes exhibit a minimal variation
with the trim-state α0 within the normal operating range. Specifically, in unstalled flight, the lateral cross-
derivatives C ′

�r
and C ′

np
are very nearly proportional to the trim CL0 , and the remaining derivatives are nearly

the same for all CL0 values. This considerably simplifies the stability and control specification of an aircraft
for all trim conditions. The 2×2 rotation matrix ¯̄S then defines the body-axis xz vector components in terms
of the x′z′ components, shown in Figure 9.4. This is effectively the same as matrix ¯̄T

s
defined by (6.4) in

Section 6.2.1.

¯̄S(α) ≡
[
cosα −sinα

sinα cosα

]
,

d¯̄S

dα
(α) =

[−sinα −cosα

cosα −sinα

]
(9.46)

{
Cx

Cz

}
=

[
¯̄S

]{
−CD

−CL

}
,

{
C�

Cn

}
=

[
¯̄S

]{
C ′
�

C ′
n

}
,

{
p̄

r̄

}
=

[
¯̄S

]{
p̄′

r̄′

}
(9.47)

The remaining y-axis components Cy, Cm, q̄ are the same between the two axis systems.

C p−l ,

C −, rn

xb

bz

−
l ,

C −, rn

pC

bz

xbu

w

α

CL

CDCx

Cz

U

Figure 9.4: Force and moment coefficients in body and stability axes. This is the non-dimensional
equivalent to Figure 6.2.

The body-axis derivatives with respect to α, all defined at the trim state, can now be computed:{
Cxα

Czα

}
=

[
d¯̄S

dα

∣∣∣∣
0

]{
−CD0

−CL0

}
+

[
¯̄S0

]{
−CDα

−CLα

}
	

{
CL0−CDα

−CLα

}
(9.48)

The body-axis moment derivatives with respect to β and control deflections are similarly computed.{
C ′
�β

C ′
nβ

}
=

[
¯̄S0

]{
C ′
�β

C ′
nβ

}
	

{
C ′
�β

− α0 C
′
nβ

C ′
nβ

+ α0 C
′
�β

}
(9.49)

{
C ′
�δ

C ′
nδ

}
=

[
¯̄S0

]{
C ′
�δ

C ′
nδ

}
	

{
C ′
�δ
− α0 C

′
nδ

C ′
nδ
+ α0C

′
�δ

}
(9.50)

The sideforce derivatives with respect to the body-axis rates are obtained with the reverse rotation by the
transpose of ¯̄S: (

Cyp Cyr

)
=

(
C ′
yp C ′

yr

)[
¯̄S

T

0

]
	

(
C ′
yp− α0C

′
yr C ′

yr+ α0 C
′
yp

)
(9.51)
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Converting the moment derivatives with respect to p̄, r̄ into the body axes requires two rotations, a pre-
rotation by ¯̄S for the moments and a reverse post-rotation by ¯̄S

T
for the rates.[

C�p C�r

Cnp Cnr

]
=

[
¯̄S0

][
C ′
�p

C ′
�r

C ′
np

C ′
nr

][
¯̄S

T

0

]
(9.52)

9.11 Longitudinal Dynamics Subset
The longitudinal-dynamics system is the upper 4×4 part of the overall system (9.37).⎧⎪⎪⎨⎪⎪⎩

Δu̇
Δẇ
Δq̇

Δθ̇

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎢⎣
Xu Xw 0 −g
Zu Zw u0 0
Mu Mw Mq 0
0 0 1 0

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

Δu
Δw
Δq
Δθ

⎫⎪⎪⎬⎪⎪⎭ +

⎡⎢⎢⎣
XδT 0 0
0 Zδf 0

0 0 Mδe

0 0 0

⎤⎥⎥⎦
⎧⎨⎩

ΔδT
Δδf
Δδe

⎫⎬⎭ (9.53)

The matrix elements above are the following dimensional stability derivatives.

Xu =
QS

m

1

u0
Cxu

Xw =
QS

m

1

u0
Cxα

Xq =
QS

m

c

2u0
Cxq

XδT =
QS

m
CxδT

Zu =
QS

m

1

u0
Czu

Zw =
QS

m

1

u0
Czα

Zq =
QS

m

c

2u0
Czq

Zδf =
QS

m
Czδf

Mu =
QSc

Iy

1

u0
Cmu

Mw =
QSc

Iy

1

u0
Cmα

Mq =
QSc

Iy

c

2u0
Cmq

Mδe =
QSc

Iy
Cmδe

(9.54)

These assume that the moment of inertia tensor ¯̄I has only the single pitch inertia element Iyy ≡ Iy, with
Ixy and Iyz being zero, which is consistent with the assumed left/right symmetry.

For a typical pitch-stable aircraft in fixed-stick flight with ΔδT = Δδf = Δδe = 0, the four eigenvalues of
the longitudinal system (9.53) are shown in Figure 9.5, and have the following characteristics.

σph ± iωph Phugoid mode (slow, weakly damped)
σSP ± iωSP Short-Period mode (fast, well-damped)

σ

ω

σ

ω
A

A

B

BC

C
Mq

σ

ω

2
g
u0

SP

SP

ph

ph

Longitudinal Modes

Short Period

Phugoid

Phugoid  approximationShort period  approximation

root progression
with decreasing Mw−

Figure 9.5: Typical longitudinal dynamics eigenvalues of a conventional aircraft. Short period and
phugoid eigenvalues closely match those given by their respective approximation models.

These two eigenvalue pairs have good spectral separation, so that they can be estimated reasonably well
in isolation by assuming that some motion components are negligible. This will give some insight into the
key aircraft aerodynamic parameters which influence these eigenmodes. The assumed motions are shown in
Figures 9.6 and 9.7, and are analyzed in the following sections.
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9.11.1 Phugoid approximation
Here we assume pitch equilibrium, or ΔM=0, which implies a negligible pitch rate and pitch acceleration,
Δq 	 0, Δq̇ 	 0. The airplane is thus assumed to remain in pitch trim, implying a fixed-α motion so that
Δw = u0 Δα = 0, as shown in Figure 9.6.

xb

bz

Figure 9.6: Assumed motion for the phugoid approximation.

The full longitudinal system (9.53) then simplifies to the “phugoid” system:{
Δu̇

Δθ̇

}
=

[
Xu −g

−Zu/u0 0

]{
Δu

Δθ

}
+

[
XδT

0

]{
ΔδT

}
(9.55)

Its 2×2 matrix has the two phugoid eigenvalues

λ1,2 ≡ σph ± iωph =
1

2

[
Xu ±

√
X2

u + 4gZu/u0

]
which have the following phugoid frequency and damping ratio.

ωph =
1

2

√
−X2

u − 4gZu/u0 	
√
2

g

u0
(slow) (9.56)

ζph ≡ −σph√
σ2

ph + ω2
ph

	 1√
2

CD0

CL0

(weakly damped) (9.57)

The corresponding eigenmodes in the sum (9.36) then give the natural response of the aircraft to pitch
perturbations in the uncontrolled or “fixed-stick” case with ΔδT =0.

For high speed aircraft the phugoid period 2π/ωph is measured in minutes, which is a rather slow mo-
tion compared to more typical aircraft maneuvers. For clean airplanes with large lift/drag ratios L/D =
CL0/CD0 , the phugoid damping ratio is seen to be especially small. On such aircraft, adequate suppression
of unwanted phugoid motions requires either an autopilot or active pitch control by the pilot.

9.11.2 Short-period approximation
Here we assume that the pitching motions are too fast for the airplane to respond significantly to the resulting
lift changes, so that during the pitch oscillations it travels in a straight line at a fixed speed. The straight-line
motion implies Δu = 0 and Δw = u0 Δθ, as shown in Figure 9.7.

xb

bz

Figure 9.7: Assumed motion for the short-period approximation.

This reduces the full longitudinal system (9.53) to the smaller 2×2 “short period” system:{
Δq̇

Δθ̇

}
=

[
Mq u0Mw

1 0

]{
Δq

Δθ

}
+

[
Mδe

0

]{
Δδe

}
(9.58)
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For the fixed-stick case Δδe=0, this has the following two short-period eigenvalues.

λ1,2 ≡ σSP ± iωSP =
1

2

[
Mq ±

√
M2

q + 4u0Mw

]
These eigenvalues strongly depend on the pitch stability derivative Mw ∼ Cmα , which is normally negative.
As Mw increases (becomes less negative), there are three distinct limiting cases, labeled A,B,C in Figure 9.5.

A) Mw < −M2
q /4u0 : σSP = 1

2Mq , ωSP = 1
2

√
−M2

q − 4u0Mw (damped oscillatory)

B) Mw = −M2
q /4u0 : σSP = 1

2Mq , 1
2Mq (critically damped)

C) Mw = 0 : σSP = Mq , 0 (instability threshold)

(9.59)

The gradual increase of Mw, or equivalently of Cmα , can in practice be caused by a rearward movement of
the center of mass, or a gradual reduction in the horizontal tail area or moment arm. Case C indicates that
instability will occur when Cmα becomes positive.

In reality, case C invalidates the short-period approximations. These assumed that the short-period motion
was fast compared to the phugoid’s frequency, but case C shows a stationary short-period mode with a zero
frequency and zero time constant. Hence, it is necessary to examine this case in more detail.

The actual behavior of the four eigenvalues of the full unsimplified longitudinal-dynamics system (9.53) is
shown in the Figure 9.8. Note that it is actually one of the phugoid eigenvalues which first becomes unstable.
The associated eigenmode cannot be categorized as either a short-period motion or a phugoid motion, but is
instead a monotonic pitch divergence. Nevertheless, despite the weakness of the short-period approximation
at the predicted onset of instability, the Cmα ≥ 0 criterion obtained from this approximation predicts the
instability of the full unsimplified longitudinal system quite well.

σ

ωShort Period

Phugoid

Figure 9.8: Progression of eigenvalues of complete longitudinal dynamics system as Mw (or Cmα)
becomes less negative and crosses zero.

9.12 Lateral Dynamics Subset

It is assumed that the aircraft has y-symmetry, so the products of inertia Ixy and Iyz vanish. Also, the xz
body axes are assumed to be aligned with the inertia tensor’s principal xz axes, so in these axes the Ixz
product vanishes as well. With these assumptions the inertia tensor is then diagonal.

¯̄I ≡

⎡⎣Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

⎤⎦ =

⎡⎣Ix
Iy

Iz

⎤⎦
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The lateral-dynamics system, which is the middle 4×4 part of the overall system (9.37), then has the form⎧⎪⎪⎨⎪⎪⎩
Δv̇
Δṗ
Δṙ

Δφ̇

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎢⎣
Yv Yp Yr−u0 g cos θ0
Lv Lp Lr 0
Nv Np Nr 0
0 1 0 0

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

Δv
Δp
Δr
Δφ

⎫⎪⎪⎬⎪⎪⎭ +

⎡⎢⎢⎣
Yδa Yδr

Lδa Lδr

Nδa Nδr

0 0

⎤⎥⎥⎦
{

Δδa
Δδr

}
(9.60)

in which the matrix elements are the following dimensional stability derivatives.

Yv =
QS

m

1

u0
Cyβ

Yp =
QS

m

b

2u0
Cyp

Yr =
QS

m

b

2u0
Cyr

Yδa =
QS

m
Cyδa

Yδr =
QS

m
Cyδr

Lv =
QSb

Ix

1

u0
C�β

Lp =
QSb

Ix

b

2u0
C�p

Lr =
QSb

Ix

b

2u0
C�r

Lδa =
QSb

Ix
C�δa

Lδr =
QSb

Ix
C�δr

Nv =
QSb

Iz

1

u0
Cnβ

Np =
QSb

Iz

b

2u0
Cnp

Nr =
QSb

Iz

b

2u0
Cnr

Nδa =
QSb

Iz
Cnδa

Nδr =
QSb

Iz
Cnδr

(9.61)

For a typical aircraft in fixed-stick flight with Δδa = Δδr = 0, the four eigenvalues of the lateral sys-
tem (9.60) are shown in Figure 9.9, and have the following characteristics.

σroll Roll-subsidence mode (very fast, damped)

σspiral Spiral mode (very slow, stable or unstable)

σDR ± iωDR Dutch Roll mode (oscillatory, moderately damped)

σ

ω
Dutch Roll

SpiralRoll Subsidence

Figure 9.9: Typical lateral dynamics eigenvalues of a conventional aircraft.

As in the longitudinal-dynamics case, we will now obtain approximate expressions for these eigenvalues by
assuming a simplified motion for the corresponding mode. The analysis follows that of Nelson [66].

9.12.1 Roll-subsidence approximation
For the roll-subsidence mode we assume a pure rolling motion about the xb axis, shown in Figure 9.10.

by

bz

p

xb

by
p

Figure 9.10: Assumed motion for the roll-subsidence approximation.
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In this case only Δφ and Δφ̇ = Δp are nonzero, so the lateral-dynamics system (9.60) reduces to the
following single first-order ODE.

{
Δṗ

}
=

[
Lp

] {
Δp

}
+

[
Lδa Lδr

]{Δδa
Δδr

}
(9.62)

Its eigenvalue for the fixed-stick case Δδa = Δδr = 0 follows immediately.

σroll 	 Lp =
QSb2

2Ixu0
C�p (9.63)

Since C�p is always negative, this corresponds to a monotonic decay in the roll rate. For most aircraft the
characteristic damping time constant 1/σroll is less than one second.

9.12.2 Spiral approximation
For this mode we assume that the roll accelerations are negligible, and only yaw motions dominate as shown
in Figure 9.11. Setting Δṗ = 0 in the second roll-moment line in the lateral system (9.60) then gives

0 = LvΔv + LrΔr

or Δv = −Lr

Lv
Δr. (9.64)

Combining this with the fourth yaw-moment line gives

{
Δṙ

}
=

[
Nr −Nv

Lr

Lv

]{
Δr

}
(9.65)

whose eigenvalue is

σspiral 	 Nr −Nv
Lr

Lv
=

QSb2

2Izu0

(
Cnr − Cnβ

C�r

C�β

)
(9.66)

which corresponds to monotonic yaw motion. In reality some roll motion (into the turn) is also present,
since roll and yaw motions are always coupled to some extent in the full lateral system (9.60).

xb
by

Figure 9.11: Assumed motion for the spiral-mode approximation. The tightening rate of the spiral
path is shown greatly exaggerated.

The spiral mode can be either stable or unstable, depending on the values of the four stability derivatives
appearing in (9.66). For conventional aircraft configurations, increasing the vertical-tail arm, increasing
the dihedral, and decreasing the trim lift coefficient CL0 all tend to make the spiral mode more stable.
The magnitude of σspiral also scales roughly with the vertical tail area via the Cnr and Cnβ

derivatives
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in (9.66). Therefore, increasing the vertical tail size will further stabilize a spirally-stable aircraft, and
further destabilize a spirally-unstable aircraft.

Most aircraft are slightly spirally unstable, although the instability is slow enough to be easily controlled by
a pilot who is attentive to the bank angle, either by observing the horizon or the artificial-horizon instrument.
A wing-leveling autopilot can perform the same function without pilot input.

9.12.3 Dutch-roll approximation
The Dutch roll mode is an analog of the short-period mode, in that it mainly consists of relatively fast yawing
motions, but which are now about the vertical axis. However, the Dutch roll mode is more complicated
because it usually also involves significant roll motions. It is these secondary roll motions, which resemble
those of a (Dutch) skater, which give the mode its name. Nevertheless, it is still useful to idealize the motion
as shown in Figure 9.12, for which we have Δv = −u0 Δψ, and roll accelerations are assumed negligible.
These assumptions reduce the full lateral system (9.60) to the smaller 2×2 Dutch roll system:

xb

by

Figure 9.12: Assumed motion for the Dutch-roll approximation.

{
Δv̇

Δṙ

}
=

[
Yv Yr−u0

Nv Nr

]{
Δv

Δr

}
(9.67)

This has the following two Dutch-roll eigenvalues.

λ1,2 ≡ σDR ± iωDR

σDR 	 Nr + Yv =
QSb2

2Izu0

(
Cnr +

Iz
mb2

Cyβ

)
ω2

DR 	 u0Nv + YvNr −NvYr =
QSb

Iz

(
Cnβ

+
ρSb

4m
(CyβCnr − Cnβ

Cyr)

) (9.68)

It must be pointed out that the neglect of roll in the assumed Dutch-roll motion in Figure 9.12 makes the
resulting eigenvalue expressions (9.68) somewhat questionable. In particular, a large wing dihedral is known
to make the Dutch-roll mode of actual aircraft less damped or even unstable, but this is not represented in
the approximate results above since the associated C�β derivative does not appear. However, the eigenvalues
of the full 4×4 lateral system (9.60) will capture this destabilizing effect of dihedral on the Dutch-roll mode.

9.13 Stability Derivative Estimation

In modern fight dynamics practice, the stability and control derivatives are most conveniently computed
numerically. The simplest and most common such approach is to employ the Vortex Lattice method devel-
oped in Chapter 6, although more advanced panel or grid methods may also be used. However, the classical
derivative estimation techniques, such as those described by Etkin [65] and Nelson [66], are still very useful
to gain some insight into how the geometry of a conventional aircraft influences the derivatives and hence the
aircraft’s dynamical behavior. The derivatives are estimated in terms of the aircraft’s geometric parameters
listed in Table 9.1. The reference (wing) area, span, chord will be denoted by S, b, c as before.
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Table 9.1: Parameters used to estimate stability derivatives of a conventional aircraft.

AR aspect ratio (= b2/S)
Sh horizontal tail area
Sv vertical tail area
ARh horizontal tail’s aspect ratio
ARv vertical tail’s aspect ratio
λ wing taper ratio (= ctip/croot)
�h distance from wing’s aerodynamic center to horizontal tail
�v distance from wing’s aerodynamic center to vertical tail
�cg distance from wing’s aerodynamic center to mass centroid
Υ effective wing dihedral angle (radians)

Vfuse fuselage volume

9.13.1 Component derivatives
The estimation formulas are based on the lift-slope derivatives of the wing and tail surfaces, typically based
on the lifting-line result (E.38) applied to each surface.

CLα =
c�α

1 + c�α/(πAR)
(9.69)

(CLα)h =
(c�α)h

1 + (c�α)h/(πARh)
(9.70)

(CLα)v =
(c�α)v

1 + (c�α)v/(πARv)
(9.71)

The lift-curve slopes c�α of the wing and tail airfoils can be obtained from 2D airfoil experimental data or
calculations. The thin-airfoil approximation c�α 	 2π is also commonly used. Compressibility effects can
also be included here via the Prandtl-Glauert theory and sweep theory as in equations (8.87) and (8.103).
It should also be noted that “endplate” effects on the vertical tail by the horizontal tail can significantly
increase (CLα)v from its estimate above.

The angle of attack seen by the horizontal tail is modified by its own induced downwash, and also by the
downwash angle of the wing at the tail location. The latter is denoted by ε, and can be estimated as

ε 	 k
CL

πAR
(9.72)

dε

dα
	 k

CLα

πAR
(9.73)

k = 1 +
1√

1+(�h/b)2

(
1

π �h/b
+ 1

)
(9.74)

where the factor k is obtained from a horseshoe-vortex model of the wing and its trailing vortex system. The
effect of the downwash is to reduce the horizontal tail’s effective lift-curve slope with respect to the aircraft
angle of attack by the factor 1−dε/dα.

The drag coefficient’s dependence on the angle of attack is commonly estimated assumed to be confined
entirely to the induced drag component.

CD = CDp +
C2
L

πAR
(9.75)

CDα =
2CL0 CLα

πAR
(9.76)
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The fuselage’s contribution to the overall lift is typically assumed to be captured by the center part of the
wing “hidden” in the fuselage, which is already included in the CLα derivative. But a fuselage does typically
have an additional significant pitching and yawing moment contributions. These can be estimated by the
slender-body theory result (6.77), which has the following non-dimensional forms.

(Cmα)fuse =
2Vfuse

Sc
(9.77)

(Cnβ
)fuse =

−2Vfuse

Sb
(9.78)

These contributions are destabilizing in pitch and yaw.

9.13.2 Longitudinal derivatives
The axial-force derivatives can now be estimated using the wing, horizontal-tail, and fuselage derivatives
above. For the axial force we have

Cx = CL sinα − CD cosα 	 CL α − CD (9.79)

Cxα = CL0 − CDα = CL0

(
1− 2CLα

πAR

)
(9.80)

Cxq 	 0 (9.81)

where small-angle approximations have been made. The normal force derivatives are estimated in the same
manner,

Cz = −CL cosα − CD sinα 	 −CL − CD α (9.82)

Czα = −CLα − CD0 (9.83)

Czq 	 −2(CLα)h Vh (9.84)

Vh ≡ Sh�h
Sc

(9.85)

with Vh denoting the horizontal tail volume coefficient.

The pitching moment is assumed to have wing, tail, and fuselage contributions.

Cmα = CLα

�cg
c

− (CLα)h Vh

(
1− dε

dα

)
+ (Cmα)fuse (9.86)

Cmq = −2(CLα)h Vh
�h
c

+ (Cmq )fuse (9.87)

The downwash factor 1−dε/dα is excluded from Cmq . The reason is that this pitch-rate derivative dominates
mainly in rapid pitching motions (e.g. in the short-period mode) where the wing’s shed and trailing vorticity
perturbations do not have sufficient time to convect to the tail to appreciably change the downwash there.
However, the downwash factor can be added if the short-period mode is expected to be significantly slower
than the wing–tail convection time. This will also give a smaller and hence more conservative estimate of
pitch damping.

9.13.3 Lateral derivatives
The side force derivatives are estimated using the force derivative on the vertical tail.

Cyβ = −Sv

S
(CLα)v (9.88)

Cyr = −2Vv (CLα)v (9.89)

Vv ≡ Sv�v
Sb

(9.90)
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The vertical tail volume coefficient Vv naturally appears.

The rolling moment derivatives are obtained by using lifting-line theory applied to the wing sections, with
the local velocities and resulting local angle of attack modified by the sideslip together with the wing di-
hedral, and by the roll and yaw rates. Integration of the local z-force perturbation across the span together
with the local moment arm gives the rolling moment perturbation.

C�β = −CLα

Υ

6

1+2λ

1+λ
(9.91)

C�p = −CLα

1

12

1+3λ

1+λ
(9.92)

C�r =
CL0

4
(9.93)

The contributions of the tail surfaces are neglected here, but could be included with a more detailed analysis.

The yaw moment derivatives are obtained in a similar manner using the local z-force perturbations. The
fuselage contribution is also included.

Cnβ
= (CLα)v Vv + (Cnβ

)fuse (9.94)

Cnp = −CL0

8
(9.95)

Cnr = −2(CLα)v Vv
�v
b

(9.96)
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Flow-Field and Force Measurement
This chapter will examine the topic of aerodynamic force measurement in solid-wall and open-jet wind
tunnels. Both direct force measurement (near-field) and wake survey (far-field) methods will be considered.

10.1 Wind Tunnel Methods – Overview

The two most common purposes of wind tunnel tests are:

1. To determine what the forces and moments would be on the actual object in flight. The tests can be
performed either on the actual object, or more commonly on a suitable scale model.

2. To obtain data for validation or calibration of theoretical or computational methods, using some rep-
resentative model geometry and flow conditions. In addition to the overall loads, ideally this data
includes more detailed information such as surface pressures and flow-field velocity distributions.

If the intent is to simulate an unbounded flow-field about a 2D airfoil or a 3D aircraft in flight, then the
tunnel walls or tunnel jet boundaries will have unwanted influences on the flow velocities at the model
location and hence on the model aerodynamic loads. Modeling and estimation of these tunnel boundary
effects to correct measured data is a major goal of this chapter. Another goal is to give a sense of the
theoretical and practical challenges in wind tunnel measurements. For a much more complete treatment of
wind tunnel testing methods and techniques, see Barlow et al [67].

10.2 Direct Force Measurements

This section examines the measurement of the aerodynamic forces and moments acting on a model mounted
in a wind tunnel, using a load sensor.

10.2.1 Force component definitions and rotations
The angle of attack α is generally defined between the model reference line and the direction of the tunnel
freestream, which is defined as the velocity vector which is present in the empty tunnel. It will be denoted
here by V∞, even though there is no flow “at infinity” in a wind tunnel. Assuming the tunnel freestream
is horizontal, the axis for the lift force component L is most conveniently chosen to be vertical, along the
gravity vector. The axis for the sideforce Y is then defined orthogonal to the other two.

The force vector acting on a wind tunnel model can be measured by mounting the model on a load sensor.
After the model weight and other instrumentation biases (or “wind-off tares”) are properly subtracted, the
remaining force F consists of the integrated pressure and shear forces acting on the model surface, and hence
is the aerodynamic near-field force as defined in Chapter 5. This force is reported as components along the
sensor’s sensing axes.
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For a sensor which is solidly attached to the model and moves with it, it is most convenient to define the
model’s xyz geometry axes to lie along the sensor axes, so that the load sensor directly reports Fx, Fy , Fz ,
as shown in Figure 10.1. These forces must then be projected onto the freestream axes to give the lift L and
drag D, by using the overall model angle of attack α and the stability-axis matrix relation (6.5), restated as
follows.

D = Fx cosα + Fz sinα

Y = Fy

L = Fz cosα − Fx sinα

(10.1)

If the model is also at a sideslip angle then the wind-axis matrix relation (6.6) would be used instead. This
more general case will not be considered here.

load sensor

V

L
F

sensing axes

Fz

Fx

α
D(−)

Figure 10.1: Axial and normal force components Fx, Fz along load sensor axes resolved into drag
and lift components D,L along and normal to the freestream. Axial force Fx is defined positive
towards the tail, opposite to direction shown.

In some wind tunnel installations the load sensor is fixed relative to the wind tunnel rather than the model,
and the model then pivots on the sensor to change the angle of attack. Ideally this type of sensor is fixed
with its axes aligned with the freestream so that it directly reports the D,Y,L force components, and the
rotation calculations (10.1) are then skipped.

10.2.2 Drag measurement error sensitivity
The measurement of aerodynamic forces by a load sensor generally gives accurate lift and sideforce compo-
nents. However, if the lift and sideforce are very large compared to the drag, as is typical for most aircraft,
then measuring the drag accurately is much more difficult. A major potential source of error is misalign-
ment of the sensor relative to its assumed orientation. This is sketched in Figure 10.2, for the case α=0 for
simplicity. If there is a small alignment error angle θerr, as in Figure 10.2 on the right, the sensor will report
the following incorrect forces Lerr,Derr, and corresponding fractional drag error.

Lerr = L cos θerr − D sin θerr 	 L (10.2)

Derr = D cos θerr + L sin θerr 	 D + Lθerr (10.3)

Derr −D

D
=

L

D
θerr (10.4)
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load sensor
V

L F F

sensing axes
Derr

Lerr

= 15L
D

shown

Sensor slightly misaligned with freestream

errθ

measured drag
with large % error

V

    sensor
misalignment
     angle

Perfect sensor alignment

D

Figure 10.2: Ideal situation for measuring aerodynamic forces with a load sensor (left). In the
presence of lift, a small misalignment of sensing axes from freestream direction results in a large
fractional error in the measured drag (right).

In the usual situation which has L � D, the D sin θerr lift term is negligible so the effect of θerr on the
measured lift is very small. But the L sin θerr drag term is very significant and can cause large fractional
measured drag errors. For example, for the case sketched in Figure 10.2 which has L/D = 15, an axis
misalignment of θerr=1◦=0.01745 rad will produce a very large 26% error in the measured drag.

The angle error can be due to either an incorrect alignment of the sensor with the model, or an incorrect
measurement of the angle of attack, or possibly due to the actual tunnel freestream flow direction being mis-
aligned with the assumed direction. Obtaining small drag measurement errors for a lifting model therefore
as a minimum requires very precise geometric and aerodynamic angle measurements.

For the remainder of this chapter we will assume that sufficient care has been used with the angle measure-
ments and load sensor alignment so that the true force and moment components on the model are correctly
measured. We will also assume that the tunnel freestream dynamic pressure q∞ corresponding to V∞ is
correctly measured, sufficiently far from the model to avoid any influence from the model’s near-field flow.

10.2.3 Uncorrected coefficients
Even with perfect measurement accuracy, measured loads which are intended to represent unbounded flow
are still considered to be uncorrected for wind tunnel wall or jet boundary effects, and are denoted by the
( )u subscript. However, they can still be non-dimensionalized by the freestream dynamic pressure and the
chosen geometric reference quantities into their corresponding coefficients. Corrections for both 2D and 3D
coefficients will be derived, but for brevity only the lift, drag, and pitching moment will be presented.

c�u ≡ L′
u

q∞cref
, cdu ≡ D′

u

q∞cref
, cmu ≡ M′

u

q∞c2ref
(10.5)

CLu ≡ Lu

q∞Sref
, CDu ≡ Du

q∞Sref
, Cmu ≡ Mu

q∞Srefcref
(10.6)

The uncorrected angle of attack αu is the geometric model angle, and the uncorrected Reynolds number is
Reu = V∞cref/ν. The subsequent sections will address the problem of how to use this uncorrected data to
obtain the corrected coefficients which would be obtained from the model if it was operated in an unbounded
flow at the corrected angle of attack and corrected Reynolds number.
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10.3 Wind Tunnel Corrections

The topic of wind tunnel corrections is a fairly large field, which started with the work of Glauert [68]. Later
work by Allen and Vincenti [69] considered compressible flows, and many other refinements have been
developed since. The objective here is to formulate the wind tunnel corrections using the flow-field modeling
concepts and far-field models developed in Chapter 2. This will further illustrate the effectiveness of these
concepts, and will also provide readily accessible means for computing the corrections in applications.

The approach here follows the classical method of images to represent the influence of the walls or jet
boundaries in the wind tunnel. After the image strengths are set by the wall or jet boundary conditions,
they are then used to give velocity perturbations Δu(x) and Δw(x) along the tunnel axis. These velocity
perturbations in turn produce changes in the model’s flow-field and forces, which will be estimated using
the various aerodynamics models and methods developed throughout this book. Removal of these predicted
changes from the measured data and estimating their effects on the flow conditions constitutes wind tunnel
corrections.

To allow focusing on the concepts rather than the details, the tunnel correction formulation and procedure
will first be given for the 2D case, for both solid-wall and open-jet tunnels. The 3D solid-wall and open-jet
tunnel cases will then be examined.

10.3.1 2D solid-wall boundaries
A solid-wall wind tunnel has the flow-tangency condition w = 0 everywhere on its top and bottom walls.
This flow can be constructed by adding a cascade of +/- images to the real body’s source and vortex sheets,
as shown in Figure 10.3. The source sheets of the images have the same sign as the sheets representing the
real model, while the vortex sheets of the images alternate in sign. In this superposition, V∞ is the velocity
in the tunnel with the model (and hence the images) absent, consistent with the previous definition.

Λ

−Γ xκ
z−κ

V h
λγ,

λ,−γ

λ,−γ

= 0w

Δ ( )xu

Δ ( )xw

Λ

−Γ xκ
z−κ

Vortex and Source Sheet ModelsWind Tunnel Model  and  Images Velocities of Image Far−Fields

z

x

Figure 10.3: 2D airfoil model in tunnel (left) is modeled as an infinite cascade of +/- vortex-sheet
and source-sheet images which give physically-correct straight streamlines at the wall locations
(center). These images have equivalent lumped 2D point singularities (right). Images produce
velocity changes Δu(x),Δw(x) along the centerline which would be absent in unbounded flow.

Next, we sum the horizontal and vertical velocity contributions Δu(x),Δw(x) of the images alone, at
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some location x along the tunnel centerline. The far-field model (2.79) is used for each image, so that
these velocities can be expressed in terms of independent unit-strength components (or kernel functions)
ûΛ, ûκx , ŵΓ, ŵκz which are summations over all the images’ far-field sources, vortices, and doublets. The
normalized tunnel coordinates X,Y,Z will be convenient here.

Δu(x) =
Λ

h
ûΛ +

κx
h2

ûκx (10.7)

Δw(x) =
Γ

h
ŵΓ +

κz
h2

ŵκz (10.8)

ûΛ(x) =
1

π

[
X

1+X2
+

X

4+X2
+

X

9+X2
+ . . .

]
+

1

2
(2D solid walls) (10.9)

ŵΓ(x) =
1

π

[
X

1+X2
− X

4+X2
+

X

9+X2
− . . .

]
(2D solid walls) (10.10)

ûκx (x) =
1

π

[
1−X2

(1+X2)2
+

4−X2

(4+X2)2
+

9−X2

(9+X2)2
+ . . .

]
(2D solid walls) (10.11)

ŵκz (x) =
1

π

[
1−X2

(1+X2)2
− 4−X2

(4+X2)2
+

9−X2

(9+X2)2
− . . .

]
(2D solid walls) (10.12)

X ≡ x

h
, Y ≡ y

h
, Z ≡ z

h
(10.13)

Each term in the brackets is the contribution of one image pair above and below the tunnel. The added 1/2
term in (10.9) is needed to obtain Δu = 0 for large negative X at the tunnel inflow. The additional useful
relations

dûΛ

dX
= ûκx ,

dŵΓ

dX
= ŵκz (10.14)

will also be used to formulate pressure-gradient and flow-curvature corrections.

For any X value the summations can be performed numerically with as many terms as needed to obtain
the asymptotic result to a sufficient tolerance. However, at the model location X = 0, the sums have the
following known analytic results.

ûΛ(0) =
1

2
, ŵΓ(0) = 0 , ûκx(0) =

π

6
, ŵκz (0) =

π

12
(2D solid walls) (10.15)

The Δu, Δw superpositions defined by equations (10.7)–(10.12) correspond to z locations midway between
the top and bottom walls, which is where the model is assumed to be positioned. Away from the centerline
Δu would also have terms with Γ and κz contributions, and Δw would have terms with Λ and κx contribu-
tions. To get some insight into the nature of wind tunnel wall effects, the complete 2D superpositions were
used to compute streamline patterns of the “effective freestream” velocity field

Veff (x,z) = V∞ + Δu(x,z) x̂ + Δw(x,z) ẑ (10.16)

for a number of basic wind tunnel models having only one far-field component present. The resulting
streamline patterns are shown in Figures 10.4 and 10.5, one component at a time. Four basic effects can be
identified. These are discussed and quantified next.

Volume and wake blockage

The model volume, or cross-sectional area A in 2D, produces a local constriction of the Veff streamlines via
the image doublets κx. The model’s drag and associated wake displacement thickness δ∗∞ produces a further
constriction via the image sources Λ. Both velocity perturbations are shown in Figure 10.6. Note that the
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Vh Vh
Λ = 0.25κx = 0.22

Speed increase from volume blockage Pressure gradient from wake blockage

Δ > 0u dΔu
dx > 0

Figure 10.4: Streamlines of the effective freestream Veff (x,z) resulting from model images required
to model effects of solid tunnel walls. Shown are models with only volume (left) and only profile
drag (right). Images have a positive Δu and dΔu/dx along the tunnel centerline at the real model
location.

Γ
Vh

= 0.5
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z = 0.125
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Δw > 0
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Figure 10.5: Streamlines of the effective freestream Veff (x,z) resulting from model images required
to model effects of solid tunnel walls. Shown are models with only lift (left) and only pitching
moment (right). Images have a positive dΔw/dx and Δw along the tunnel centerline at the real
model location.

doublet effect is local while the source effect persists downstream. At the model at x=0, these perturbations
due to the volume and the wake displacement produce an increase ΔV in the effective freestream speed,
known as the blockage effect. To first order this depends only on the streamwise velocity perturbation Δu.

Veff = V∞ + ΔV (10.17)

ΔV

V∞
=

Δu(0)

V∞
=

1

2

Λ

V∞h
+

π

6

κx
V∞h2

=
1

4

c

h
cd +

π

6

A

h2
(2D solid walls) (10.18)

The far-field source and doublet relations (2.85) and (2.89) have been used to write Λ and κx in terms of
the model’s drag coefficient cd and cross-sectional area A, with the assumption Veff 	 V∞. This is justified
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Figure 10.6: Streamwise velocity disturbances along the tunnel centerline due to solid walls, for
unit-strength far-field doublet (from model volume) and far-field source (from model drag).

because ΔV/V∞ is a small quantity, so this will incur only a second-order error which is negligible.

The small increase in the effective freestream speed also produces the following increased effective freestream
dynamic pressure at the model location.

qeff ≡ 1

2
ρV 2

eff = q∞

(
1+

ΔV

V∞

)2

	 q∞

(
1 + 2

ΔV

V∞

)
= q∞

(
1 +

1

2

c

h
cd +

π

3

A

h2

)
(10.19)

It will also be useful to approximate the inverse dynamic pressure ratio

q∞
qeff

=

(
1 +

1

2

c

h
cd +

π

3

A

h2

)−1

	 1− 1

2

c

h
cd −

π

3

A

h2
(2D solid walls) (10.20)

which assumes that the two correction factors are much less than unity.

Wake-induced buoyancy

An additional effect of the wake displacement is that it produces an acceleration of the effective freestream
at the model location x=0, as can be seen from the ûΛ(x) curve in Figure 10.6.

dVeff
dx

=
dΔV

dx
=

dΔu

dx
(0) =

Λ

h2
dûΛ

dX
(0) =

π

6

Λ

h2
=

π

12

V∞ c

h2
cd (10.21)

The result is a streamwise pressure gradient

dpeff
dx

= −ρV∞
dVeff
dx

= − π

12

ρV 2
∞ c

h2
cd (10.22)

which then acts on the airfoil’s cross-sectional area to produce an added buoyancy drag which will need to
be subtracted from the uncorrected drag.

ΔD′
buoy = −dpeff

dx
A =

π

12
ρV 2

∞ c cd
A

h2
(10.23)

Δcdbuoy =
D′

buoy
1
2ρV

2
∞ c

=
π

6

A

h2
cd (2D solid walls) (10.24)



228 Chapter 10

Streamline curvature

The model lift and associated image circulations produce a local flow curvature χ via the streamwise deriva-
tive dΔw/dx,

χ =
1

V∞

dΔw

dx
(0) =

Γ

V∞h2
dŵΓ

dX
(0) =

π

12

Γ

V∞h2
=

π

24

c

h2
c�u (10.25)

where the far-field vortex relation (2.84) has been used. Again, the assumption Veff 	V∞ is made here.

This flow curvature effectively adds to the airfoil’s real curvature and thus changes its lift and pitching
moment. The effects can be estimated by first-order thin airfoil theory as given in Appendix D, by specifying
a parabolic camberline with the specified curvature. This produces the following change in the lift and
moment coefficients which will need to be subtracted from the uncorrected values.

Δc�curv =
π

2
χ c =

π2

48

c2

h2
c�u (2D solid walls) (10.26)

Δcmcurv = −π

8
χ c = − π2

192

c2

h2
c�u (2D solid walls) (10.27)
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Figure 10.7: Vertical velocity disturbances along the tunnel centerline due to solid walls, for unit-
strength far-field vortex (from model lift) and far-field z-doublet (from model pitching moment).

Flow angle

The far-field z-doublet is given by the pitching moment about the far-field singularity location, which is
somewhat arbitrary. However, the most rational choice is to choose this location at the lift centroid, which
is also the vorticity centroid. In that case the pitching moment about this location and the z-doublet are both
zero, so no lift correction needs to be applied for the ŵκz perturbation velocity component.

Δcdangle = 0 (10.28)

However, the flow angle perturbation represents a direct correction to the experimental angle of attack.

Δαangle =
Δw(0)

V∞
=

κz
V∞h2

ŵκz (0) =
π

3

c2

h2
(cmu)c/2

=
π

3

c2

h2

(
cmu +

1

4
c�u

)
(2D solid walls) (10.29)

The midchord pitching moment coefficient (cmu)c/2 was used to define the far-field z–doublet, since that’s
where the far-field vortex was assumed to be placed for the flow-curvature corrections above.
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Application of 2D wall corrections

We now assume that all the velocity perturbations from the images are small, so that the resulting force
perturbation from each velocity perturbation can be subtracted linearly from the uncorrected coefficients.
The dynamic pressure scaling is then applied to produce the final corrected coefficients.

cd =
q∞
qeff

(
cdu − Δcdbuoy − Δcdangle

)
(10.30)

c� =
q∞
qeff

(c�u − Δc�curv) (10.31)

cm =
q∞
qeff

(cmu − Δcmcurv) (10.32)

The angle of attack and Reynolds number which the model effectively sees are also obtained by correcting
for the perturbed flow angle and flow speed.

α = αu + Δαangle (10.33)

Re =
Veff
V∞

Reu (10.34)

Substituting the various changes into the correction relations derived from the solid-wall image models and
dropping the higher-order terms, gives the corrected coefficients in terms of the uncorrected values.

cd =

(
1− 1

2

c

h
cd −

π

2

A

h2

)
cdu (10.35)

c� =

(
1− 1

2

c

h
cd −

π

3
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h2
− π2

48

c2

h2

)
c�u (10.36)

cm =

(
1− 1

2

c

h
cd −

π

3

A

h2

)
cmu +

π2

192

c2

h2
c�u (10.37)

α = αu +
π

24

c2

h2

(
cmu +

1

4
c�u

)
(10.38)

Re =

(
1 +

1

4

c

h
cd +

π

6

A

h2

)
Reu (10.39)

Equation (10.35) can be solved for cd explicitly, or on the righthand side cd 	 cdu can be assumed in the
usual case where that term is very small.

10.3.2 2D open-jet boundaries
The 2D open-jet wind tunnel considered here still has solid sidewalls which are spanned by the model, these
being necessary to obtain 2D flow. However, the top and bottom flow boundaries are free streamlines at
a constant ambient pressure p∞, which will make the overall flow-field different from what it would be in
an unbounded flow. Images can again be used to model this effect, as shown in Figure 10.8, but the image
signs are different from the solid-wall case. Specifically, the image vortex sheets all have the same sign
as those representing the real airfoil, while the source sheets alternate in sign. This gives zero x-velocity
perturbations at the jet boundary, and thus to first order makes this boundary a constant-pressure surface.

For concise results we again use the far-field of each image to compute the overall velocity contributions
Δu(x), Δw(x) along the jet centerline, so they can be given by expressions (10.7) and (10.8) which have
source, vortex, and doublet components. The kernel functions of these components are now different from
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Figure 10.8: 2D airfoil in open-jet tunnel (left) is modeled as an infinite cascade of -/+ images which
ensure zero streamwise velocity perturbation and hence constant pressure at the jet boundaries (cen-
ter). Source, vortex, and doublet far-fields of images produce velocity changes Δu(x),Δw(x) along
the centerline which are absent in unbounded flow (right).

the solid-wall case, and are given as follows.

ûΛ(x) =
1

π

[
− X

1+X2
+

X

4+X2
− X

9+X2
+ . . .

]
(2D open jet) (10.40)

ŵΓ(x) =
1

π

[
− X

1+X2
− X

4+X2
− X

9+X2
− . . .

]
− 1

2
(2D open jet) (10.41)

ûκx (x) =
1

π

[
− 1−X2

(1+X2)2
+

4−X2

(4+X2)2
− 9−X2

(9+X2)2
+ . . .

]
(2D open jet) (10.42)

ŵκz (x) =
1

π

[
− 1−X2

(1+X2)2
− 4−X2

(4+X2)2
− 9−X2

(9+X2)2
− . . .

]
(2D open jet) (10.43)

At the model location X=0, the sums have the following known analytic results.

ûΛ(0) = 0 , ŵΓ(0) = −1

2
, ûκx (0) = − π

12
, ŵκz (0) = −π

6
(2D open jet) (10.44)

Figures 10.9 and 10.10 show the streamline patterns of the resulting Veff (x,z) field for each image singularity
component. Most of the effects are reversed from the solid-wall case, and the most notable difference is the
overall turning of the jet by the model lift.

Volume and wake blockage

In the open-jet wind tunnel, the model’s volume (area in 2D) results in the closest images having a negative
volume, which produces a local dilation of the Veff streamlines. The model’s viscous wake displacement
results in images with negative displacement, which produces a further spreading. The components of the
streamwise velocity perturbation Δu(x) along the tunnel axis which are associated with these flow changes
are shown in Figure 10.11, which can be compared to Figure 10.6 for the solid-wall case.
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Figure 10.9: Streamlines of the effective freestream Veff (x,z) resulting from model images required
to model effects of open-jet boundaries. Shown are models with only volume (left) and only profile
drag (right). Images have a negative Δu and dΔu/dx along the jet centerline at the real model
location.
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Figure 10.10: Streamlines of the effective freestream Veff (x,z) resulting from model images required
to model effects of open-jet boundaries. Shown are models with only lift (left) and only pitching
moment (right). Images have a negative dΔw/dx and Δw along the jet centerline at the real model
location.

The open-jet boundaries produce a decrease in the velocity and effective dynamic pressure at the model via
a negative volume blockage term. Since ûΛ(0) = 0, the wake blockage effect is entirely absent here.

ΔV
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=

Δu(0)
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= − π
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= − π

12

A

h2
(2D open jet) (10.45)

qeff 	 q∞
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Figure 10.11: Streamwise velocity disturbances along the tunnel jet centerline due to open-jet
boundaries, for unit-strength far-field doublet (from model volume) and far-field source (from model
drag).

Wake-induced buoyancy

The first images of the model’s far-field source are negative, which produces a decelerating effective freestream
at the model, as shown in Figure 10.11. Hence the wake-induced buoyancy effect in the open-jet case is op-
posite in sign and half as large as in the solid-wall case. The resulting buoyancy drag change then also has
the opposite sign.

Δcdbuoy = − π

12

A

h2
cd (2D open jet) (10.48)

Streamline curvature

Compared to the solid-wall case, the curvature effect of lift is opposite in sign, and twice in magnitude.

Δc�curv = −π2

24

c2

h2
c�u (2D open jet) (10.49)

Δcmcurv =
π2

96

c2

h2
c�u (2D open jet) (10.50)

Flow angle

The flow angle change at the model is

Δαangle =
Δw(0)

V∞
=

Γ

V∞h
ŵΓ(0) +

κz
V∞h2

ŵκz (0)

= −1

4

c

h
c�u − π

12

c2

h2
(cmu)c/2 (2D open jet) (10.51)

where the first lift term did not appear in the solid-wall case, but it dominates here. This term will also tilt
the lift vector to create an additional drag component along the tunnel freestream direction.

Δcdangle =
1

4

c

h
c2�u (2D open jet) (10.52)

This added drag scales as c2� , and thus behaves much like induced drag. It should also be noted that for
reasonable c/h ratios this correction will be very large compared to the final corrected drag coefficient. For
this reason, measurement of 2D drag in the presence of lift by direct load sensing is likely to be impractical
in an open-jet wind tunnel. An alternative method will be considered in Section 10.4.2.
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Figure 10.12: Vertical velocity disturbances along the tunnel centerline due to solid walls, for unit-
strength far-field vortex (from model lift) and far-field z-doublet (from model pitching moment).

Application of 2D jet corrections

Substituting the changes for the open-jet case into the correction relations (10.30)–(10.32) gives the cor-
rected coefficients and operating parameters in terms of the uncorrected values.
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)
Reu (10.57)

10.3.3 3D tunnel images
Figure 10.13 shows a 3D lifting object in a wind tunnel of dimensions Bh × h (B is the cross-section’s
aspect ratio). Its far-field is represented by a 3D x-doublet Kx which models the volume V , a 3D source Σ
which models profile drag Dp. These far-field strengths were derived in Section 2.12:

Kx = V∞V (10.58)

Σ =
Dp

ρV∞
=

1

2
V∞ CDp Sref (10.59)

In the case of a powered model with engines which produce thrust, Dp would be the net streamwise force
on the model excluding induced drag, or “profile drag – thrust.” When this is zero, the positive momentum
defect of the viscous wakes is canceled by the negative momentum defect of the propulsive jets.

The lifting object trails a vortex wake, which can be lumped into a semi-infinite 2D z-doublet line. Its
strength κz is obtained from the far-field κz definition (2.83), applied to the vortex wake in the Trefftz-
Plane yz coordinates by replacing −γyx with γx y. The Trefftz-Plane vorticity relation (5.37) and final lift
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result (5.65) are also used.

κz =

∫
γx y ds =

∫
−d(Δϕ)

ds
y ds =

∫
Δϕ dy =

L

ρV∞
=

1

2
V∞ CL Sref (10.60)

This doublet-line representation assumes that the model’s span is small compared to the tunnel dimensions
Bh or h. For larger spans it is more realistic to use a horseshoe vortex to represent the model’s far-field [67].
But the model-span/tunnel-height ratio then becomes another parameter to consider, and the tunnel correc-
tions also become more complicated. Since the focus here is illustration of the main tunnel-wall effects, the
simpler doublet-line representation of the model and vortex wake will be used.
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Figure 10.13: 3D lifting object in a wind tunnel of dimensions Bh×h. The far-fields of the object’s
images are represented by the singularities Kx,Σ, κz , associated by the object’s volume, net profile
drag, and lift, respectively.

The model’s images will produce velocity perturbations along the tunnel axis which in general have the form

Δu(x ;B) =
Σ

h2
ûΣ +

Kx

h3
ûKx (10.61)

Δw(x ;B) =
κz
h2

ŵκz (10.62)

dΔu

dx
(x ;B) =

Σ

h3
dûΣ

dX
=

Σ

h3
ûKx (10.63)

dΔw

dx
(x ;B) =

κz
h3

dŵκz

dX
(10.64)

where the unit-strength velocity kernels ûΣ, ûKx , ŵκz are the sums over all the images as in the 2D case.
The streamwise derivative of Δw is also summed to obtain flow curvature corrections. It’s convenient to
first define the unit-strength x and z velocities Û and Ŵ for each image singularity.

ÛΣ(x,y,z) =
1

4π

X

[X2+Y 2+Z2]3/2
(10.65)

ÛKx (x,y,z) =
1

4π

Y 2+Z2−2X2

[X2+Y 2+Z2]5/2
(10.66)

Ŵκz (x,y,z) =
1

4π

1

Y 2+Z2

{
Y 2−Z2

Y 2+Z2

(
X

[X2+Y 2+Z2]1/2
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)
− XZ2

[X2+Y 2+Z2]3/2

}
(10.67)

dŴκz

dX
(x,y,z) =

1

4π

1

Y 2+Z2

{
Y 2−Z2

[X2+Y 2+Z2]3/2
− Z2 Y 2+Z2−2X2

[X2+Y 2+Z2]5/2

}
(10.68)
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10.3.4 3D solid-wall boundaries
For the tunnel cross-section and model shown in Figure 10.13, the flow tangency requirement on all four
solid walls is imposed by the array of images shown in Figure 10.14. As in the 2D case, the images produce
axial and vertical velocity perturbations along the tunnel centerline, given by summing over all the images
in the yz plane. The j index sums along y, and the k index sums along z.

ûKx (x ;B) =
∞∑

j=−∞

∞∑
k=−∞

ÛKx(X, jB, k) (3D solid walls) (10.69)

ûΣ(x ;B) =

∞∑
j=−∞

∞∑
k=−∞

ÛΣ(X, jB, k) +
1

2B
(3D solid walls) (10.70)

ŵκz (x ;B) =

∞∑
j=−∞

∞∑
k=−∞

(−1)k Ŵκz (X, jB, k) (3D solid walls) (10.71)

dŵκz

dX
(x ;B) =

∞∑
j=−∞

∞∑
k=−∞

(−1)k
dŴκz

dX
(X, jB, k) (3D solid walls) (10.72)

The j = 0, k = 0 self-influence term is omitted from the above double sums. Along the tunnel axis, these
velocity perturbations look qualitatively similar to those for the 2D case shown in Figures 10.6 and 10.7.
Their values at the x=0 model location are plotted versus the section aspect ratio B in Figure 10.15.
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Figure 10.14: Image arrays around a 3D tunnel cross section, needed to produce zero normal ve-
locity at the walls (solid rectangle), Left figure gives signs of the image 3D x-doublet and source
strengths. Right figure gives signs of the image 2D z-doublet strengths.
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Figure 10.15: 3D velocity disturbances at the model location x = 0 versus tunnel section aspect
ratio, for a solid-wall tunnel.
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10.3.5 3D open-jet boundaries
The constant pressure or Δu= 0 requirement on the open-jet boundary is obtained with the image arrays
shown in Figure 10.16. The perturbation velocities are given by the following sums over the images.

ûKx (x ;B) =
∞∑

j=−∞

∞∑
k=−∞

(−1)(j+k)ÛKx(X, jB, k) (3D open jet) (10.73)

ûΣ(x ;B) =

∞∑
j=−∞

∞∑
k=−∞

(−1)(j+k)ÛΣ(X, jB, k) (3D open jet) (10.74)

ŵκz (x ;B) =
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j=−∞

∞∑
k=−∞

(−1)jŴκz (X, jB, k) (3D open jet) (10.75)
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j=−∞

∞∑
k=−∞

(−1)j
dŴκz

dX
(X, jB, k) (3D open jet) (10.76)

Again, the j = 0, k = 0 self-influence term is omitted from these double sums. The velocity values at the
x=0 model location are plotted versus the section aspect ratio B in Figure 10.17.
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Figure 10.16: Image arrays around a 3D tunnel cross section needed to produce Δu=0 at the jet
boundary (dotted), thus representing an open jet. Left figure gives signs of the image 3D x-doublet
and source strengths. Right figure gives signs of the image 2D z-doublet strengths.
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Figure 10.17: 3D velocity disturbances at the model location x = 0 versus tunnel section aspect
ratio, for an open-jet tunnel.

The 3D image velocities derived above are the starting point for application to actual tunnel corrections
as described next. The corrections for solid-wall and open-jet tunnels have the same form, except that the
magnitudes and signs are different.
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Volume and wake blockage

The blockage effects are essentially the same as in the 2D case, as given by (10.18) and (10.19).

ΔV

V∞
=

Δu(0)

V∞
=

Σ

V∞h2
ûΣ(0) +

Kx

V∞h3
ûKx (0) =

Sref

h2
CDp

2
ûΣ(0) +

V
h3

ûKx(0) (10.77)

q∞
qeff

	 1− 2
ΔV

V∞
= 1 − Sref

h2
CDp ûΣ(0) − 2

V
h3

ûKx (0) (10.78)

The 3D far-field models (2.110),(2.113) have been used to express Σ and Kx in term of the model’s profile
drag coefficient and volume. The velocity kernel factors ûΣ(0) and ûKx (0) depend on the tunnel cross-section
aspect ratio B, and can be obtained from Figure 10.15 for a solid-wall tunnel, or from Figure 10.17 for an
open-jet tunnel.

Wake-induced buoyancy

The streamwise acceleration from the wake displacement is also computed the same way as in 2D.

dVeff
dx

=
dΔV

dx
=

Λ

h3
ûKx (0) =

V∞
h

Sref

h2
CDp

2
ûKx (0) (10.79)

The resulting streamwise pressure gradient acts on the body’s volume V to produce an additional buoyancy
drag which must be removed from the measured drag.

ΔCDbuoy
=

1
1
2ρV

2
∞ Sref

ρV∞
dVeff
dx

V =
V
h3

CDp ûKx (0) (10.80)

Flow angle

The vertical velocity Δw at the model will produce an angle correction as in the 2D case.

Δαangle =
Δw(0)

V∞
=

κz
V∞h2

ŵκz (0) =
1

2

Sref

h2
CLu ŵκz (0) (10.81)

This angle will also tilt the lift vector and produce a drag correction which must be removed from the
measured drag.

ΔCDangle
= −CLu Δangle = −1

2

Sref

h2
C2
Lu ŵκz (0) (10.82)

This drag correction scales as C2
L like induced drag, and is in fact equivalent to “ground effect” for the

solid-wall case. For the open-jet case the correction has the opposite sign.

Streamline curvature

The flow curvature is given by the streamwise derivative of Δw as in the 2D case.

χ =
κz

V∞h3
dŵκz

dX
(0) =

1

2h
CLu

Sref

h2
dŵκz

dX
(0) (10.83)

The effect on the lift and moment coefficients depends on the model configuration, since different com-
ponents will see different flow angles in the presence of the curved flow. However, we note that the flow
angle distribution due to the streamline curvature is the same as that generated by an equivalent pitch rate
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qcurv = dΔw/dx = V∞χ. Hence, it is reasonable and convenient to quantify the flow curvature effect in
terms of the aircraft’s pitch-rate stability derivatives CLq , Cmq , treated in Chapter 6.

ΔCLcurv = CLq

Δq cref
2V∞

= CLq

χ cref
2

=
1

4
CLu CLq

Srefcref
h3

dŵκz

dX
(0) (10.84)

ΔCmcurv = Cmq

Δq cref
2V∞

= Cmq

χ cref
2

=
1

4
CLu Cmq

Srefcref
h3

dŵκz

dX
(0) (10.85)

The change in lift coefficient will also produce a change in drag coefficient. Here we will assume that only
the induced drag component is affected.

ΔCDcurv =
dCDi

dCL
ΔCLcurv =

2CLu

π ARe
ΔCLcurv (10.86)

Application of 3D tunnel corrections

The force and moment coefficients are corrected for the tunnel boundary velocity perturbations in the same
basic manner as in the 2D case.

CD =
q∞
qeff

(
CDu − ΔCDcurv − ΔCDbuoy

− ΔCDangle

)
(10.87)

CL =
q∞
qeff

(CLu − ΔCLcurv) (10.88)

Cm =
q∞
qeff

(Cmu − ΔCmcurv) (10.89)

The angle of attack and Reynolds number which the model effectively sees are also obtained by correcting
for the perturbed flow angle and flow speed.

α = αu + Δαangle (10.90)

Re =
Veff
V∞

Reu (10.91)

Substituting the various changes into the correction relations derived from the solid-wall image models and
dropping the higher-order terms, gives the corrected coefficients in terms of the uncorrected values.

CD =

(
1− Sref

h2
CDp ûΣ(0) − 2

V
h3

ûKx (0)

)
CDu − 1

2

Srefcref
h3

CLq

C2
Lu

πARe

dŵκz

dX
(0)

− V
h3

CDp ûKx (0) +
1

2

Sref

h2
C2
Lu ŵκz (0) (10.92)

CL =

(
1− Sref

h2
CDp ûΣ(0) − 2

V
h3

ûKx (0)

)
CLu − 1

4

Srefcref
h3

CLq CLu
dŵκz

dX
(0) (10.93)

Cm =

(
1− Sref

h2
CDp ûΣ(0) − 2

V
h3

ûKx (0)

)
Cmu − 1

4

Srefcref
h3

Cmq CLu

dŵκz

dX
(0) (10.94)

α = αu +
1

2

Sref

h2
CLu ŵκz (0) (10.95)

Re =

(
1 +

1

2

Sref

h2
CDp ûΣ(0) +

V
h3

ûKx (0)

)
Reu (10.96)

Note that application of these corrections requires knowing the profile drag and induced drag components
of the total drag.
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10.4 2D tunnel drag measurements

10.4.1 Flow two-dimensionality requirements
Valid 2D wind tunnel experiments, regardless of the measurement techniques used, in general require that
the flow is actually two-dimensional to a sufficient accuracy. The model must span the entire test section,
since any significant gaps between the model wingtips and the tunnel walls will result in the generation
of trailing vorticity and unwanted induced drag. Unfortunately, the model wingtips will adversely interact
with the tunnel-wall boundary layers, which will usually add spurious pressure drag to the model. The wall
boundary layer fluid can also flow spanwise onto the model and disturb the model’s ideally 2D boundary
layers. To avoid these problems, the tunnel wall boundary layers just ahead of the model ideally should be
removed with local wall suction, or energized with tangential blowing. Also, the model aspect ratio b/c
can be made large to reduce the effect of the ends. Large tunnel height to model chord ratios h/c are also
desirable to minimize the tunnel-wall effects and the associated corrections, which will be discussed later.

Assuming that sufficient precautions are taken to ensure good flow two-dimensionality, the drag of a 2D
model with negligible lift can be satisfactorily measured with a load sensor. However, measurement of the
drag of a 2D lifting airfoil using a load sensor is extraordinarily difficult. Because a 2D airfoil can easily
have L′/D′ 	 100 or more, the drag error from load-sensor misalignment as given by equation (10.4)
becomes overwhelming. For example, a misalignment error of θerr =1◦ and L′/D′ =100 will give 175%
error in the measured drag, rendering the experimental results meaningless. Furthermore, even small drag
additions from the model/wall junction interaction can overwhelm the model’s small drag. In practice, the
direct drag force measurement approach is simply not suitable for 2D lifting airfoils. A good alternative is
the wake momentum drag measurement technique, which is described next.

10.4.2 Wake momentum drag measurement
This method seeks to measure the profile drag indirectly, via the far-field momentum defect of the airfoil’s
wake which is defined in terms of the wake velocity profile u(z). This in turn is obtained from the wake total
pressure profile po(z) measured via a wake rake (or drag rake), which is an array of pitot tubes with spacing
Δz, as shown in Figure 10.18. The local static pressure pe at the rake location is also measured via a static
probe. This static pressure is typically assumed to be constant across the wake.

V
wake rakez

p p− refo z( ) (measured)

u z( )

p p− ref (measured)e

Figure 10.18: Wake measurement via a wake rake for determination of 2D profile drag.

Most pressure sensors report a difference between two pressures, with one of these being some convenient
chosen reference pressure pref supplied to the sensor. Typically this is either p∞ or po∞ , or some other
comparable pressure. Regardless, the reported data is actually po(z)−pref and pe−pref .

The wake velocity profile is computed from the rake pressure data and the definition of total pressure.

u(z) =

√
2[po(z) − pe]

ρ
=

√
2[(po(z)−pref)− (pe−pref)]

ρ
(10.97)

ue = u(ze) (10.98)
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The displacement and momentum thicknesses and corresponding shape parameter are then computed by
numerical integration over the i = 1 . . . N rake tubes.

δ∗ =

∫ (
1− u

ue

)
dz 	

N∑
i=1

(
1− ui

ue

)
Δz (10.99)

θ =

∫ (
1− u

ue

)
u

ue
dz 	

N∑
i=1

(
1− ui

ue

)
ui
ue

Δz (10.100)

H =
δ∗

θ
(10.101)

From the far-field force analysis given in Appendix C, the profile drag/span is the momentum defect far
downstream in the wake.

D′ = P∞ = ρV 2
∞ θ∞ (10.102)

cd ≡ D′

1
2ρV

2
∞ c

= 2
θ∞

c
(10.103)

The wake reaches its final value θ∞ downstream of the airfoil’s static pressure near-field, where pe = p∞

and correspondingly ue=V∞. Hence, the rake should ideally be placed far downstream, well away from the
airfoil’s near-field. One practical difficulty with this is that the wake spreads rapidly downstream, and the
velocity defect profile ue−u(z) becomes small and is difficult to measure accurately. So for measurement
accuracy of the velocity profile it’s desirable to measure the wake close behind the airfoil where pe �=p∞ in
general.

This conflict is resolved by measuring the wake fairly close behind the airfoil, and then extrapolating the re-
sults to far-downstream conditions using the Squire-Young formula (4.118) which was derived and discussed
in Section 4.13.3, and is restated as follows for convenience.

θ∞ = θ(x̄)

(
ue(x̄)

V∞

)(Havg+2)

(10.104)

where Havg =
H(x̄)+ 1

2
(10.105)

Coincidentally, this relation was originally developed by Squire and Young [34] for the calculation of profile
drag by extrapolation from the trailing edge quantities, thus avoiding shear layer calculations into the wake.
Here, it is used to avoid the need to measure the wake too far downstream.
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Vector Notation
This Appendix will summarize various vector symbols and operations which are convenient for formulating
the equations of fluid motion. The operations will also be interpreted as vector-matrix products. A scalar
will be denoted here by α, vectors by u and v, and matrices by ¯̄A, with the following cartesian components.

u ≡

⎧⎨⎩
ux
uy
uz

⎫⎬⎭ v ≡

⎧⎨⎩
vx
vy
vz

⎫⎬⎭ ¯̄A ≡

⎡⎣Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎤⎦
A vector is assumed here to be a column vector by convention. Its transpose ()T is then a row vector, which
is sometimes needed to properly form vector-vector and vector-matrix products.

A.1 Vector and Matrix Multiplication
Vector Inner (Dot) Product

u · v = uTv =

{
uT

}⎧⎨⎩v

⎫⎬⎭ = uxvx + uyvy + uzvz (scalar)

Vector Outer Product

u ⊗v = uvT =

⎧⎨⎩u

⎫⎬⎭
{

vT
}

=

⎡⎣uxvx uxvy uxvz
uyvx uyvy uyvz
uzvx uzvy uzvz

⎤⎦ (matrix)

Matrix-Vector Product

¯̄A · v = ¯̄Av =

⎡⎣ ¯̄A

⎤⎦⎧⎨⎩v

⎫⎬⎭ =

⎧⎨⎩
Axxvx +Axyvy +Axzvz
Ayxvx +Ayyvy +Ayzvz
Azxvx +Azyvy +Azzvz

⎫⎬⎭ (vector)

Vector-Matrix-Vector Product

u · ¯̄A · v = uT ¯̄Av =

{
uT

}⎡⎣ ¯̄A

⎤⎦⎧⎨⎩v

⎫⎬⎭ =
ux(Axxvx +Axyvy +Axzvz)

+uy(Ayxvx +Ayyvy +Ayzvz)
+uz(Azxvx +Azyvy +Azzvz)

(scalar)

Vector Cross Product
This is computed via the determinant, or via the antisymmetric matrix u⇒ formed from u’s components:

u× v = det

⎡⎣ x̂ ŷ ẑ

ux uy uz
vx vy vz

⎤⎦ = u⇒v =

⎡⎣ 0 −uz uy
uz 0 −ux

−uy ux 0

⎤⎦⎧⎨⎩v

⎫⎬⎭ =

⎧⎨⎩
uyvz−uzvy
uzvx−uxvz
uxvy−uyvx

⎫⎬⎭ (vector)
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Vector-Matrix Cross Product

u× ¯̄A = u⇒ ¯̄A =

⎡⎣uyAzx−uzAyx uyAzy−uzAyy uyAzz−uzAyz

uzAxx−uxAzx uzAxy−uxAzy uzAxz−uxAzz

uxAyx−uyAxx uxAyy−uyAxy uxAyz−uyAxz

⎤⎦ (matrix)

A.2 Scalar and Vector Derivative Operations
Partial differentiation with respect to the x, y, z coordinates will be compactly denoted by ∂x, ∂y, ∂z .

Gradient of Scalar

∇α =

⎧⎨⎩
∂xα
∂yα
∂zα

⎫⎬⎭ (vector)

Divergence of Vector

∇ · u = ∂xux + ∂yuy + ∂zuz (scalar)

Curl of Vector

∇× u = det

⎡⎣ x̂ ŷ ẑ

∂x ∂y ∂z
ux uy uz

⎤⎦ =

⎧⎨⎩
∂yuz−∂zuy
∂zux−∂xuz
∂xuy−∂yux

⎫⎬⎭ (vector)

Gradient of Vector

∇u =

⎡⎢⎣− (∇ux)
T −

− (∇uy)
T −

− (∇uz)
T −

⎤⎥⎦ =

⎡⎢⎣ | | |

∂xu ∂yu ∂zu

| | |

⎤⎥⎦ =

⎡⎢⎣∂xux ∂yux ∂zux

∂xuy ∂yuy ∂zuy

∂xuz ∂yuz ∂zuz

⎤⎥⎦ (matrix)

This ∇u is not symmetric in general. It is symmetric only if u is irrotational, or ∇×u = 0.

A.3 Matrix Derivative Operations
The divergence of a matrix is unambiguous only for a symmetric matrix, denoted here by ¯̄S.

¯̄S =

⎡⎢⎣ − ST
x −

− ST
y −

− ST
z −

⎤⎥⎦ =

⎡⎢⎣ | | |

Sx Sy Sz

| | |

⎤⎥⎦ =

⎡⎢⎣Sxx Sxy Sxz

Syx Syy Syz

xzx Szy Szz

⎤⎥⎦ ,
Sxy = Syx

Sxz = Szx

Syz = Szy

As indicated, ¯̄S can be formed from the three vectors Sx,Sy,Sz in rows or columns. Note that these are not
completely independent because of the three symmetry relations (Sx)y=Sxy=Syx=(Sy)x , etc.

Divergence of Symmetric Matrix

∇ · ¯̄S =

⎧⎨⎩
∇ · Sx

∇ · Sy

∇ · Sz

⎫⎬⎭ =

⎧⎨⎩
∂xSxx + ∂ySxy + ∂zSxz

∂xSyx + ∂ySyy + ∂zSyz

∂xSzx + ∂ySzy + ∂zSzz

⎫⎬⎭ (vector)

Divergence of Matrix-Vector Product (expanded)

∇ ·
(
¯̄S · u

)
=

(
∇ · ¯̄S

)
· u +

(
¯̄S · ∇

)
· u (scalar)

or equivalently

∂x(Sxxux+Sxyuy+Sxzuz)
+ ∂y(Syxux+Syyuy+Syzuz)
+ ∂z(Szxux+Szyuy+Szzuz)

=
(∂xSxx+∂ySxy+∂zSxz)ux

+ (∂xSyx+∂ySyy+∂zSyz)uy
+ (∂xSzx+∂ySzy+∂zSzz)uz

+ (Sxx∂x+Sxy∂y+Sxz∂z)ux
+ (Syx∂x+Syy∂y+Syz∂z)uy
+ (Szx∂x+Szy∂y+Szz∂z)uz
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Sheet Jump Relations
This Appendix will evaluate the velocity field of infinite flat constant-strength source and vortex sheets. In
the sheet’s s�n Cartesian coordinate system, the field point r is placed at (0, 0, n), and the general integration
point r′ is at (s, �, 0), as shown in Figure B.1.

r

Vλ

Vγ
−

s

n

s

λ γ, γ

θ

ψ

r

r

r

sd d

Figure B.1: Velocity calculation geometry for infinite flat source and vortex sheet.

Applying the general Vλ expression (2.15) to this case, we have r−r′ = (−s,−�, n), and the source-sheet
part of the velocity at the field point is then

Vλ(0,0,n) =
λ

4π

∫
∞

−∞

∫
∞

−∞

−s ŝ − � �̂ + n n̂

(s2 + �2 + n2)3/2
ds d� (B.1)

which when integrated must have zero ŝ and �̂ components because of their antisymmetric integrands. The
remaining nonzero n̂ component is readily evaluated by first switching to the spherical angle coordinates
θ, ψ shown in Figure B.1.

s = n tan θ cosψ (B.2)

� = n tan θ sinψ (B.3)

s2 + �2 + n2 = n2 tan2 θ + n2 =
n2

cos2 θ
(B.4)

ds d� =

(
∂s

∂θ

∂�

∂ψ
− ∂s

∂ψ

∂�

∂θ

)
dθ dψ =

(
n2 sin θ

cos3 θ

)
dθ dψ (B.5)

Vλ(0,0,n) =
λ

4π

∫ 2π

0

[∫ π/2

0
n̂

n

|n| sin θ dθ

]
dψ =

λ n̂

2

n

|n| (B.6)

In (B.5), the area integration element ds d� is related to dθ dψ via the coordinate-transformation Jacobian
factor in the parentheses.
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A similar calculation gives the velocity of a uniform-strength infinite vortex sheet.

Vγ(0,0,n) =
γ×n̂

2

n

|n| (B.7)

The most general case has superimposed source and vortex sheets, with possibly an additional contribution
from boundaries or a freestream.

V(0,0,n) =
λ n̂

2

n

|n| +
γ×n̂

2

n

|n| + Vb (B.8)

The velocity jump across the sheet is defined and evaluated as

ΔV ≡ lim
n→0

[V(0,0,n) −V(0,0,−n)]

ΔV = λ n̂ + γ×n̂ (B.9)

and the reciprocal relations can be obtained by forming first n̂ · ΔV and then n̂× ΔV.

λ = n̂ · ΔV (B.10)

γ = n̂×ΔV (B.11)

Although the above calculations were performed for flat, infinite, constant-strength sheets, the jump relations
(B.9),(B.10),(B.11) are valid for a sheet of any size or shape, provided the sheet geometry and strength
distributions are smooth at the field point, without any corner or crease. The justification is that in the
n → 0 limit, a compensating magnification of the smooth sheet will approach the flat-sheet case shown in
Figure B.1.

A relation for the doublet sheet strength μ which was used to define a divergence-free vortex-sheet strength

γ = n̂× ∇̃μ (B.12)

can be derived by first writing the velocity in terms of the surface-parallel and surface-normal components
of the potential gradient,

∇ϕ = V = ∇̃ϕ +
∂ϕ

∂n
n̂ (B.13)

where the in-surface gradient ∇̃ has the ŝ and �̂ components. Taking the difference across the sheet gives

ΔV = ∇̃(Δϕ) + Δ

(
∂ϕ

∂n

)
n̂ (B.14)

where the order of the Δ and ∇̃ operations has been swapped. Forming n̂×{equation (B.14)} gives

n̂× ΔV = n̂× ∇̃(Δϕ) + Δ

(
∂ϕ

∂n

)
n̂×n̂ (B.15)

or γ = n̂× ∇̃(Δϕ) (B.16)

since n̂×n̂ = 0. Equating (B.12) and (B.16) gives

n̂× ∇̃μ = n̂× ∇̃(Δϕ) (B.17)

and since ∇̃() and n̂ are always orthogonal, the cross products in (B.17) are redundant and can be dropped.

∇̃μ = ∇̃(Δϕ) (B.18)

Comparing the left and right sides above we conclude that

μ = Δϕ (B.19)

apart from an arbitrary additive constant. This very simple potential-jump result complements the velocity-
jump relations (B.10) and (B.11).
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2D Airfoil Far-Field Lift and Drag
This Appendix will relate the circulation and source strengths of a 2D airfoil’s far-field, defined in Chapter 2,
to the airfoil’s lift and drag. The derivations will use the integral momentum theorem derived in Chapter 5.

C.1 Far-Field Model

The general 2D far-field expansion for the velocity (2.79) from Chapter 2 is restated here for convenience.

V(x,z) 	 Vff(x,z) = V∞ + ∇ϕff

= V∞ +
Λ

2π

x x̂+ z ẑ

r2
+

Γ

2π

z x̂− x ẑ

r2

+
κx
2π

(z2−x2) x̂− 2xz ẑ

r4
+

κz
2π

−2xz x̂+ (x2−z2) ẑ

r4
(C.1)

The coefficients Λ,Γ, κx, κz are defined by the area integrals (2.74)–(2.77) over the source and vorticity
fields, or by the simpler lumped integrals (2.80)–(2.83) over the equivalent source and vortex sheets. How-
ever, these definitions are not useful in cases where the sheet strength details are unknown. This Appendix
will obtain simpler alternative expressions for Γ and Λ in terms of the airfoil’s lift and drag.

The x, z axis orientation will be chosen so that the x axis lies along the freestream velocity.

V∞ = V∞ x̂ + 0 ẑ (C.2)

Sufficiently far from the airfoil, the far-field velocity (C.1) is an excellent approximation to the actual flow
about a real lifting 2D airfoil. However, since Vff is irrotational it cannot represent the viscous wake which
trails downstream, as shown on the left side of Figure C.1. This is corrected here by adding the negative
wake defect velocity Δuwake(z) = u− V∞, to make the modified far-field+wake velocity

Vffw = Vff + Δuwake x̂ (C.3)

where it is understood that Δuwake is zero everywhere far from the airfoil except in the downstream wake.
It is useful to define the wake defect volume flow rate/span, as the integrated wake defect velocity.

V̇ ′
wake ≡

∫
−Δuwake dz (C.4)

We will now apply mass and momentum conservation relations using the modified far-field velocity Vffw.
For simplicity, only the freestream, source, and vortex terms will be retained. A full analysis would reveal
that the κx, κz doublet terms have no net mass or momentum contributions in any case.
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x
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Airfoil  Frame Still−Air  Frame

ffw

Δ

 Λ =

Λ, Γ

ff

Δ

ϕ

ϕ

ϕ

potential flow’s
  total outflow

Figure C.1: Viscous wake velocity defect as seen in airfoil frame on left. In the still-air frame, the
wake is a jet towards the airfoil which outflows as the apparent far-field source Λ. The velocity field
of the far-field vortex Γ has no outflow component. The x, z–doublets are not shown.

x

Vff

n

r

θ

z

ffp

V

uwakeΔ

z

F

Λ, Γ

dl

Figure C.2: Outer control volume for calculation of airfoil force. The freestream velocity V∞ and
the Λ,Γ singularities provide the far-field velocity Vff on the contour, which then also provides the
pressure pff via Bernoulli’s equation. Terms with the compact wake defect Δuwake will be integrated
locally over z.

C.2 Outer Contour Integration

The outer control volume is defined as a circle of some radius r, shown in Figures C.1 and C.2. The control-
volume integrations will then be most easily performed in polar coordinates, in which the boundary length
element dl, the unit normal vector n̂, and the far-field velocity Vff take the following forms.

dl = r dθ

n̂ = r̂

Vff(θ) = V∞

(
cos θ r̂ − sin θ θ̂

)
+

Λ

2πr
r̂ − Γ

2πr
θ̂ (C.5)
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The following integrals will allow evaluation of the various control volume terms by inspection.∫ 2π

0
sin θ dθ = 0∫ 2π

0
cos θ dθ = 0

∫ 2π

0
sin2θ dθ = π∫ 2π

0
cos2θ dθ = π

∫ 2π

0
dθ = 2π∫ 2π

0
sin θ cos θ dθ = 0

(C.6)

C.3 Mass Conservation

The integral mass conservation equation (1.27) applies to any contour surrounding the airfoil.∮
ρ (V · n̂) dl = 0 (C.7)

Using V = Vffw as defined by (C.3) and (C.5), forming the dot product with n̂, and evaluating the mass
integral for the circular control volume gives

Vffw · n̂ = V∞ cos θ +
Λ

2πr
+ Δuwake∮

ρ (Vffw · n̂) dl = ρ r

∫ 2π

0

(
V∞ cos θ +

Λ

2πr

)
dθ + ρ

∫
Δuwake dz

0 = ρΛ − ρV̇ ′
wake

V̇ ′
wake = Λ (C.8)

As shown on the right side of Figure C.1, when viewed in the still-air frame, V̇ ′
wake is the volume flow of

the jet of fluid running upstream towards the airfoil. Because of mass conservation, the jet cannot simply
disappear, but must flow out radially as shown. Far from the airfoil this radial outflow is precisely what is
being represented by the far-field source Λ located at the airfoil. Its total outflow rate is Λ, which is the same
as the wake inflow rate V̇ ′

wake as shown by the mass conservation argument above.

C.4 Momentum Conservation

The far-field force expression (5.13) in the 2D case has the form

F′ = −
∮

ρ (V · n̂)V dl +

∮
(p∞−p) n̂ dl (C.9)

where F′ is the force vector/span exerted on the airfoil, shown in Figure C.2. The constant p∞ has been
included in the pressure integral, which is permitted since

∮
n̂dl=0 for any closed circuit. Dotting equation

(C.9) with x̂ and ẑ gives separate equations for the drag/span and lift/span components of F′.

F′ · x̂ = D′ = −
∮

ρ (V · n̂)(V · x̂) dl +

∮
(p∞−p) (n̂ · x̂) dl (C.10)

F′ · ẑ = L′ = −
∮

ρ (V · n̂)(V · ẑ) dl +

∮
(p∞−p) (n̂ · ẑ) dl (C.11)

For evaluation of the pressure integrals above, the far-field pressure is defined from the irrotational velocity
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via Bernoulli’s equation (1.109).

p∞ − pff(x,z) =
1

2
ρ
(
V 2
ff − V 2

∞

)
(C.12)

V 2
ff − V 2

∞ =

[
V∞ cos θ +

Λ

2πr

]2
+

[
−V∞ sin θ − Γ

2πr

]2
− V 2

∞

= 2V∞
Λ

2πr
cos θ + 2V∞

Γ

2πr
sin θ +

Λ2+Γ2

(2πr)2
(C.13)

Note that Δuwake is not included in V 2
ff for the pressure, since it is the potential flow which determines

the pressure which is imposed on the thin wake. However, Δuwake is included in the velocity dot products
appearing in the momentum-flux terms in (C.10) and (C.11), which are computed as follows.

x̂ = cos θ r̂ − sin θ θ̂

ẑ = sin θ r̂ + cos θ θ̂

n̂ · x̂ = cos θ

n̂ · ẑ = sin θ

Vffw · x̂ =

[
V∞ cos θ +

Λ

2πr

]
cos θ −

[
−V∞ sin θ − Γ

2πr

]
sin θ + Δuwake

= V∞ +
Λ

2πr
cos θ +

Γ

2πr
sin θ + Δuwake (C.14)

Vffw · ẑ =

[
V∞ cos θ +

Λ

2πr

]
sin θ +

[
−V∞ sin θ − Γ

2πr

]
cos θ

=
Λ

2πr
sin θ − Γ

2πr
cos θ (C.15)

C.5 Far-Field Lift/Span

For the first momentum-flow integral in the lift equation (C.11) we have

−
∮

ρ (Vffw · n̂)(Vffw · ẑ) dl

= −ρ

∮ (
V∞ cos θ +

Λ

2πr
+ Δuwake

)(
Λ

2πr
sin θ − Γ

2πr
cos θ

)
dl (C.16)

Before replacing dl with r dθ to perform the integration, it’s helpful to first to expand the integrand and
separate out the terms containing Δuwake, which are best integrated in the vertical wake coordinate z.

−
∮

ρ (Vffw · n̂)(Vffw · ẑ) dl

= −ρ r

∫ 2π

0

(
V∞Λ

2πr
sin θ cos θ − V∞Γ

2πr
cos2θ +

Λ2

(2πr)2
sin θ − ΛΓ

(2πr)2
cos θ

)
dθ

− ρ

∫
Δuwake

(
Λ

2πr
sin θ − Γ

2πr
cos θ

)
dz

=
ρV∞Γ

2
− ρV̇ ′

wakeΓ

2πr

	 ρV∞Γ

2
(C.17)
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The second term containing V̇ ′
wake has been dropped, since it goes to zero when the radius r of the control

volume is made very large.

Using result (C.13), the pressure integral in the lift equation (C.11) evaluates as follows.∮
(p∞ − pff) (n̂ · ẑ) dl = r

∫ 2π

0

1

2
ρ
(
V 2
ff − V 2

∞

)
sin θ dθ

=
1

2
ρ r

∫ 2π

0

(
2V∞

Λ

2πr
cos θ + 2V∞

Γ

2πr
sin θ +

Λ2+Γ2

(2πr)2

)
sin θ dθ

=
ρV∞Γ

2
(C.18)

Adding integrals (C.17) and (C.18) gives the Kutta-Joukowsky Theorem relating lift and circulation.

L′ = ρV∞Γ (C.19)

Since a far-field expansion can in principle be computed for any flow by lumping its source and vorticity
fields, the Kutta-Joukowsky Theorem must apply to the flow about any 2D object, not just an airfoil. The
object must, however, must be in an infinite or sufficiently extensive flow, so that the far-field expansion (C.5)
is valid far from the object. It is not valid if the object is very close to a solid wall, for example.

C.6 Far-Field Drag/Span
The first momentum flow integral in the drag equation (C.10) is evaluated as follows, where we again
separate out the Δuwake terms before integration.

−
∮

ρ (Vffw · n̂)(Vffw · x̂) dl

= −ρ

∮ (
V∞ cos θ +

Λ

2πr
+Δuwake

)(
V∞ +

Λ

2πr
cos θ +

Γ

2πr
sin θ +Δuwake

)
dl (C.20)

= −ρ r

∫ 2π

0

(
V 2
∞ cos θ +

V∞Λ

2πr
(1+cos2θ) +

V∞Γ

2πr
cos θ sin θ +

Λ2

(2πr)2
cos θ +

ΛΓ

(2πr)2
sin θ

)
dθ

− ρ

∫ (
V∞Δuwake cos θ + (V∞ +Δuwake)Δuwake

)
dz

= −3

2
ρV∞Λ + ρV∞V̇ ′

wake + P∞

= −1

2
ρV∞Λ + P∞ (C.21)

P∞ ≡ ρ

∫
wake

(V∞+Δuwake) (−Δuwake) dz =

∫
ρ u (V∞−u) dz (C.22)

where (C.8) has been used to replace V̇ ′
wake with Λ, and the streamwise wake momentum defect P∞ has

been defined. Note also that the approximation cos θ 	 1 was made in the
∫
( ) dz integral, since θ 	 0 at

the wake location where it exits the control volume.

Again using result (C.13), the pressure integral in the drag equation (C.10) evaluates as follows.∮
(p∞ − pff) (n̂ · x̂) dl = r

∫ 2π

0

1

2
ρ
(
V 2
ff − V 2

∞

)
cos θ dθ

=
1

2
ρ r

∫ 2π

0

(
2V∞

Λ

2πr
cos θ + 2V∞

Γ

2πr
sin θ +

Λ2+Γ2

(2πr)2

)
cos θ dθ

=
ρV∞Λ

2
(C.23)
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Adding integrals (C.21) and (C.23) gives the drag as being equal to the streamwise wake momentum defect.

D′ = P∞ (C.24)

Recall that the far-field source strength Λ is defined by (C.8) as the wake defect volume flow V̇ ′
wake at

the control volume boundary. However, this changes somewhat along the wake in the manner shown in
Figure C.3, so that the exact value of Λ depends on where the outer boundary is placed. However, as the
wake spreads and Δuwake tends to zero, V̇ ′

wake will asymptote to the value set by D′ = P∞. This can be
seen by restating and comparing the definitions (C.4) and (C.22),

ρV∞V̇ ′
wake ≡ ρV∞

∫
wake

−Δuwake dz

P∞ ≡ ρ

∫
wake

(V∞ +Δuwake) (−Δuwake) dz

which become the same in the Δuwake → 0 limit. Hence, if we make the logical choice of defining Λ to
be the asymptotic wake defect volume flow, then we have an expression relating the profile drag and the
far-field source.

D′ = ρV∞Λ (C.25)

This is a drag complement to the Kutta-Joukowsky lift theorem (C.19).

The local momentum defect P (x) itself varies in the wake, but asymptotes to its far-downstream value P∞

much faster than V̇ ′
wake. Its evolution is governed by the von Karman integral momentum equation (4.27),

which in the wake simplifies to

dP

dx
= δ∗

dp

dx
(C.26)

where p is the static pressure. The pressure directly behind the airfoil quickly asymptotes to very nearly the
freestream value p → p∞ within a fraction of the chord. Beyond this point P then stays constant regardless
of the wake spreading, as indicated in Figure C.3.

x

P

wake

.
ρV

practical
rear extent
of airfoil’s
pressure field

D

( )x

( )x

wake

.

p( )r

Figure C.3: Scaled wake-defect volume flow ρV∞V̇ ′
wake asymptotes towards the wake momentum

defect P , which is constant and equal to P∞ = D′ outside of the airfoil’s pressure field.



Appendix D

Extended Thin Airfoil Theory
This Appendix derives an extended version of Glauert’s incompressible thin airfoil theory [8]. Although
this has largely been replaced by panel methods in applications, it is still valuable as a conceptual model,
and is also the basis of simple 3D flow models such as lifting-line theory. Here, the extension accounts for
finite airfoil thickness by the addition of a source sheet to the usual vortex sheet. A precise definition of the
various sheet velocities appearing in the theory will also be made.

D.1 Geometry and Problem Formulation

As shown in Figure D.1, the airfoil extends over 0 ≤ x ≤ c, and has upper and lower surfaces defined by
the camber function Z(x) and the thickness function t(x). Small angle approximations will be used where
appropriate.

zu(x) = Z + 1
2t (D.1)

zl (x) = Z − 1
2t (D.2)

z

x
V

(  )x

(  )xt thicknessu (  )xz

(  )xzl

α
c

camberZ

Figure D.1: Thin airfoil theory geometry definition.

The components of the freestream velocity V∞ = u∞x̂+w∞ẑ are defined in terms of the angle of attack α.

u∞ = V∞ cosα (D.3)

w∞ = V∞ sinα (D.4)

It’s useful to note that if the trailing edge is not required to be at z=0, as shown in Figure D.1, then there
is a redundancy in Z(x) and α. Specifically, the substitutions Z → Z+θx and α → α+θ simultaneously
rotate the airfoil and the freestream by the same angle θ (assuming θ � 1), so that there is no effect on the
physical angle of attack and no effect on the flow and on the aerodynamic forces. This redundancy is not
problematic, and is convenient in cases where the camberline is changed, such as by a flap deflection.

As diagrammed in Figure D.2, the airfoil’s perturbation velocity field is represented by source and vortex
sheets of strengths λ(x), γ(x) placed on the x axis along the chord. This is essentially equivalent to the
source-sheet transpiration model used to represent the effective displacement of a viscous wake, shown
in Figure 3.4. Here, the source sheet models the physical displacement of the airfoil thickness, while the
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added vortex sheet captures the nonzero loading across the airfoil. The components of the upper and lower
velocities V+,V− on each side of the sheet at z = 0+, 0− can be written in terms of their average values
u,w, and their jumps λ, γ.

V+ = u+x̂+ w+ẑ , u+
(x) = u∞ + u+ 1

2γ , w+
(x) = w∞ + w + 1

2λ (D.5)
V− = u−x̂+ w−ẑ , u−

(x) = u∞ + u− 1
2γ , w−

(x) = w∞ + w − 1
2λ (D.6)

Note that these locally satisfy the sheet velocity jump relations (B.10),(B.11) derived in Appendix B.

(V+ −V−) · x̂ = γ (D.7)

(V+ −V−) · ẑ = λ (D.8)

The average perturbation velocities u,w along the x axis are in turn expressible in terms of λ and γ by the
usual 2D superposition integrals (2.23) and (2.24), specialized here with z=0.[

1
2(V

++V−)−V∞

]
· x̂ = u(x) =

1

2π

∫ c

0
λ(x′)

dx′

x−x′
(D.9)

[
1
2(V

++V−)−V∞

]
· ẑ = w(x) =

1

2π

∫ c

0
−γ(x′)

dx′

x−x′
(D.10)

V
w

u
V x

λ

γ

λ , γ

z z

V+

V−

V+

V−

Velocity Jumps  and  Sheet Strengths Average Velocities on Sheet

x

Figure D.2: Normal and tangential jumps between upper and lower sheet velocities V+(x),V−(x),
are represented by source and vortex sheet strengths λ(x), γ(x), which then define the average per-
turbation velocities u(x), w(x) via the superposition integrals (D.9) and (D.10).

Mass conservation is now applied to two infinitesimal dx–wide control volumes above and below the sheets
shown in Figure D.3.

(u+ + du+)(zu + dzu) − u+ zu − w+ dx = 0

(u− + du−)(z l + dz l) − u− z l − w− dx = 0

or
d

dx

[(
u∞ + u+ 1

2γ
) (

Z + 1
2 t
)]

−
(
w∞ + w + 1

2λ
)

= 0 (D.11)

d

dx

[(
u∞ + u− 1

2γ
) (

Z − 1
2 t
)]

−
(
w∞ + w − 1

2λ
)

= 0 (D.12)

Subtracting [(D.11)−(D.12)] and averaging 1
2 [(D.11)+(D.12)] produces simplified but equivalent forms.

d

dx

[
(u∞+u) t + γ Z

]
= λ (D.13)

d

dx

[
(u∞+u)Z + 1

4γ t
]

= w∞ + w (D.14)

Since u(x) and w(x) are given in terms of λ(x) and γ(x) by the superposition integrals (D.9) and (D.10),
the mass conservation requirements (D.13) and (D.14) are two linear coupled integro-differential equations
which are to be solved for the unknown sheet strengths λ(x) and γ(x). The inputs are the known geometry
functions t(x) and Z(x), and the angle of attack which defines u∞ and w∞.
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d
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d

Figure D.3: Mass conservation applied to infinitesimally-wide upper and lower control volumes.

D.2 First-Order Solution

Classical thin airfoil theory assumes that the velocity perturbations and the geometric angles are small.

dZ

dx
,
dt

dx
,

u

V∞
,
w

V∞
,

λ

V∞
,

γ

V∞
, α � 1

To a first approximation we can therefore drop the quadratic products of these quantities from the control-
volume equations (D.13), (D.14), giving their simplified versions

d

dx
(u∞ t) = λ (D.15)

d

dx
(u∞ Z) = w + w∞ (D.16)

which are now decoupled. Also, the streamwise perturbation velocity u is not involved in their solution.

D.2.1 Source-sheet solution
Using the first-order approximation cosα 	 1, or equivalently u∞ 	 V∞, equation (D.15) is an explicit
expression for the source sheet strength independent of the airfoil camber and freestream angle of attack.

λ(x) = V∞
dt

dx
(D.17)

This is the same as relation (2.86) derived via the same type of control volume analysis as used here.

D.2.2 Vortex-sheet solution
The solution of equation (D.16) for γ is more involved. One possible numerical solution approach is the
Vortex Lattice method described in Chapter 6. Here, we will instead use Glauert’s semi-analytical Fourier
series solution method. This relies on a change in the independent variable x → ϑ, with ϑ = 0...π .

x(ϑ) =
c

2
(1− cos ϑ)

dx =
c

2
sinϑ dϑ

(D.18)

x0 cc/2
0

ϑ

π
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With these substitutions, the superposition integrals (D.9) and (D.10) take on the following equivalent forms.

u(ϑ) =
1

2π

∫ π

0
λ(ϑ′)

sinϑ′ dϑ′

cos ϑ′ − cos ϑ
(D.19)

w(ϑ) =
1

2π

∫ π

0
−γ(ϑ′)

sinϑ′ dϑ′

cos ϑ′ − cos ϑ
(D.20)

Substituting (D.20) for w in equation (D.16), approximating sinα 	 α, and dividing by V∞ produces the
following integral equation for the unknown vortex sheet strength γ(ϑ).

1

2π

∫ π

0

γ(ϑ′)

V∞

sinϑ′ dϑ′

cos ϑ′ − cos ϑ
= α− dZ

dx
(ϑ) ( 0 < ϑ < π ) (D.21)

We must also impose a Kutta condition to ensure physically-correct smooth flow at the trailing edge.

γ = 0 ( ϑ = π ) (D.22)

The driving function α− dZ/dx in (D.21) is now assumed to be represented by a Fourier cosine series,

α− dZ

dx
(ϑ) = A0 −

∞∑
n=1

An cosnϑ (D.23)

illustrated in Figure D.4. The negative sign in front of the sum could be absorbed into all the An coefficients,
but is left outside for later algebraic simplicity.

1 cos cos cos0 1 2 3

...

x x x x x

−α

ϑ ϑ ϑ ϑ

2ϑϑ
(ϑ)

ϑ

x
Zd

d

3ϑ

Figure D.4: Cosine series used to represent the net slope of the airfoil’s camberline, which drives
the flow-tangency integral equation (D.21).

The required coefficients A0, A1,A2 . . . are computed one by one by multiplying (D.23) by 1, cos ϑ, cos 2ϑ . . .
and integrating over 0...π.

A0 = α − 1

π

∫ π

0

dZ

dx
dϑ , An =

2

π

∫ π

0

dZ

dx
cosnϑ dϑ (D.24)

The orthogonality property of the cosine functions is also used.∫ π

0
cosnϑ cosmϑ dϑ =

⎧⎨⎩
π (if n = m = 0)
π/2 (if n = m �= 0)
0 (if n �= m)

(D.25)

The integrals in (D.24) can be evaluated either analytically or numerically. If dZ/dx is smooth, then the
higher An coefficients will rapidly decrease and the infinite series can be safely truncated.

Replacing α− dZ/dx in equation (D.21) by its Fourier series (D.23) gives the integral equation

1

2π

∫ π

0

γ(ϑ′)

V∞

sinϑ′ dϑ′

cos ϑ′ − cos ϑ
= A0 −

∞∑
n=1

An cos nϑ (D.26)
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which is to be solved for the unknown γ(ϑ) distribution. The solution is

γ(ϑ)

V∞
= 2

(
A0

1 + cos ϑ

sinϑ
+

∞∑
n=1

An sin nϑ

)
(D.27)

which can be confirmed by substituting it into (D.26), using the trigonometric identity

sinnϑ sinϑ = 1
2

[
cos(n−1)ϑ − cos(n+1)ϑ

]
,

evaluating the integrals using the known Glauert Integral∫ π

0

cosnϑ′ dϑ′

cos ϑ′ − cos ϑ
= π

sinnϑ

sinϑ
, (D.28)

and verifying that the terms for each A0,A1 . . . coefficient match on left and right.

The leading coefficient A0 in the series (D.27) entirely contains the effect of the angle of attack α, plus
the ϑ–averaged value of the negative camberline slope −dZ/dx. The remaining coefficients A1,A2 . . .
depend only on the shape of the camberline, and in particular are independent of α. Figure D.5 shows the γ
contributions of the individual camberline Fourier terms, all plotted versus the physical x coordinate rather
than versus ϑ.

γ
V2 0 1 2 3

...

sin sin sin
sin

x x x x x

cos1 +
ϑ

ϑ
ϑ

2ϑ 3ϑ

Figure D.5: Vortex sheet strength series components. Each component is associated with a specific
camberline geometry mode sketched below it.

D.3 First-Order Force and Moment Calculation

Computation of the lift and moment consists of chordwise integrations of the pressure loading pl−pu across
the airfoil. In non-dimensional form this is

ΔCp ≡ pl − pu
1
2ρV

2
∞

=
|Vu|2 − |Vl|2

V 2
∞

	 2
γ

V∞
(D.29)

where the approximation is the result of dropping all quadratic quantities in accordance with the first-order
thin airfoil approximations. The lift coefficient is given by

c� =

∫ 1

0
ΔCp d

(x
c

)
	

∫ 1

0
2

γ

V∞
d
(x
c

)
=

∫ π

0

γ

V∞
sinϑ dϑ (D.30)

in which γ is now substituted by its series (D.27).

c� =

∫ π

0
2

(
A0

1 + cos ϑ

sinϑ
+

∞∑
n=1

An sin nϑ

)
sinϑ dϑ (D.31)
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The integrations inside the summation can be evaluated by using the orthogonality property of the sine
functions. ∫ π

0
sinnϑ sinmϑ dϑ =

{
π/2 (if n = m)
0 (if n �= m)

(D.32)

We see that only the n = 1 integral inside the summation is nonzero. The final result is

c� = π (2A0 + A1) = 2πα + c�0 (D.33)

c�0 = 2

∫ π

0

dZ

dx
(cos ϑ− 1) dϑ (D.34)

where the zero-angle lift coefficient c�0 depends only on the camberline shape. Note that the lift slope

dc�
dα

= 2π (D.35)

is therefore independent of the airfoil camber shape. The lift coefficient can alternatively be given by

c� = 2π (α− αL=0) , αL=0 = −c�0/2π (D.36)

where αL=0 is the zero-lift angle .

The moment coefficient about the quarter-chord reference point xref/c = 1/4 is computed by again using
the trigonometric coordinate ϑ.

cm,c/4 ≡
M ′

c/4

1
2ρV

2
∞ c2

=
1

1
2ρV

2
∞ c2

∫ c

0
−(pl−pu)(x−c/4) dx (D.37)

=

∫ 1

0
−ΔCp

(
x

c
− 1

4

)
d
(x
c

)
=

π

4
(A2 −A1) =

1

2

∫ π

0

dZ

dx

(
cos2ϑ− cos ϑ

)
dϑ (D.38)

The influence of camber on the airfoil c�(α) and cm,c/4(α) curves is illustrated in Figure D.6 An important
result is that this cm,c/4 depends only on the camberline shape, but not on the angle of attack. Therefore,
the quarter-chord location is the aerodynamic center for any airfoil, defined as the location about which the
moment is independent of α, or equivalently where

dcm,c/4

dα
= 0. (D.39)

These results are subject to the assumptions of thin airfoil theory. In practice, they are surprisingly accurate
even for relatively thick or highly-cambered airfoils, especially for predicting trends (with camber, α, etc)
than absolute numbers. When used merely as a conceptual framework for understanding airfoil behavior
rather than for quantitative predictions, thin airfoil theory is highly applicable to almost any airfoil.

D.4 Second-Order Solution

D.4.1 General case
An improved solution for the vortex sheet strength γ(x) can be obtained by using the first-order solution to
estimate the higher-order terms which were dropped from the governing equation (D.14). These involve the
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α α

c cm,c/4c

cm,c/4
αL=0

2π

A

B

A

B

B

A
c 0

Figure D.6: Lift and moment coefficients for a flat airfoil A, and a cambered airfoil B. Camber
produces only a shift in the coefficients, with no effect on the function slopes. The pitching moment
about the quarter-chord has zero slope for any camber.

airfoil thickness distribution t(x), which can be expanded in a Fourier sine series in the ϑ coordinate,

t(ϑ) = c

∞∑
n=1

Bn sinnϑ (D.40)

where Bn =
2

π

∫ π

0

t

c
sinnϑ dϑ (D.41)

The airfoil cross-sectional area is seen to depend only on the first Fourier coefficient.

A =

∫ c

0
t dx =

c

2

∫ π

0
t sinϑ dϑ =

π

4
c2 B1 (D.42)

The source sheet strength (D.17) can also be given in terms of the airfoil thickness series coefficients.

λ(ϑ) = V∞
dt

dx
= V∞

dt/dϑ

dx/dϑ
=

2V∞
sinϑ

∞∑
n=1

nBn cosnϑ (D.43)

Substituting this into (D.9) and evaluating the superposition integral gives the streamwise perturbation ve-
locity u in terms of the thickness series coefficients.

u(ϑ) =
1

2π

∞∑
n=1

2V∞ nBn

∫ π

0

cos ϑ′ dϑ′

cos ϑ′−cosϑ
= V∞

∞∑
n=1

nBn
sinnϑ

sinϑ
(D.44)

D.4.2 Flat elliptical-thickness airfoil
For the simple case of a “flat” airfoil with Z=0, the governing equation (D.14) simplifies as follows.

d

dx

[
1
4γ t

]
= w∞ +w (D.45)

Consider an additional simplification of an elliptical thickness distribution, which has B2 = B3 = . . . = 0.
Using this to simplify the lefthand side of (D.45), and replacing w on the righthand side with the superposi-
tion integral (D.10) produces the following higher-order version of equation (D.21).

B1

2

1

sinϑ

d

dϑ

[
γ(ϑ)

V∞
sinϑ

]
+

1

2π

∫ π

0

γ(ϑ′)

V∞

sinϑ′ dϑ′

cos ϑ′ − cos ϑ
= α ( 0 < ϑ < π ) (D.46)

This is an integro-differential equation for the unknown γ(ϑ) distribution. The solution is

γ(ϑ)

V∞
=

2α

1−B1

1 + cos ϑ

sinϑ
(D.47)
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which has exactly the same form as the leading term in the first-order solution (D.27), except it is increased
by the factor 1/(1−B1). The lift and the lift-curve slope are therefore increased by this same factor.

For general (non-elliptical) airfoils, it is reasonable to replace B1 with the more easily computed airfoil area
A using relation (D.42). Hence the lift-curve slope of finite-thickness airfoils is predicted to be

dc�
dα

=
2π

1−(4/π)A/c2
(D.48)

which matches effectively-exact inviscid panel calculations reasonably well, as listed in Table D.1.

Table D.1: Lift-curve slopes (dc�/dα)/(2π) predicted by higher-order thin airfoil theory, compared
with effectively-exact values from a panel method in the bottom row.

Flat plate 10% Ellipse NACA 0006 NACA 0012
A/c2 0 0.0785 0.0411 0.0822

equation (D.48) 1 1.111 1.055 1.117
panel method 1 1.100 1.051 1.102
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Prandtl Lifting-Line Wing Theory
This Appendix will summarize Prandtl’s lifting-line wing theory, which predicts the lift and induced drag
on a planar unswept high aspect ratio wing. The physical lifting-line model was already presented in Sec-
tion 5.5, and is illustrated in Figure 5.6. The focus here will be on the mathematical and computational
treatment of this model. Given some wing geometry c(y), αaero(y) and a freestream V∞, α, the objective here
is to determine the spanwise circulation Γ(y) and subsequently the wing lift and induced drag L,Di.

Although the method presented here is largely superseded by the more general lifting-surface theory and the
associated vortex-lattice method treated in Chapter 6, it does serve as a useful reference case and provides a
simple analytical result for the minimum induced drag of a planar wing of given span.

E.1 Lifting-Line Formulation
Since vortex lines cannot end within a fluid, a change in the wing circulation dΓ across a spanwise interval
dy must be accompanied by an equal an opposite streamwise wake vortex filament γ dy = dΓwake = −dΓ,
as shown in Figure E.1. This relates the wake vortex sheet strength γ(y) to the wing circulation Γ(y).

γ(y) =
dΓwake

dy
= −dΓ

dy
(E.1)

V

γ
Γ(y)

Γ d
Γ Γ+ΔΓ

Δy

Δy 0limit

= − 
ΔΓ =  −ΔΓwake Γ+   Γd

Γ Γwaked

yd
(  )y

Figure E.1: Wake sheet strength related to wing’s spanwise circulation gradient.

The downwash velocity and resulting induced angle at any station y are given by (5.19), (5.18), are related
to γ(y) and hence to the wing circulation gradient everywhere.

wwake(y) =
1

4π

∫ b/2

−b/2

dΓ

dy′
dy′

y′−y
(E.2)

αi(y) =
−wwake

V∞
(E.3)
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Another feature of lifting-line theory is the assumption that each wing section behaves as a 2D airfoil flow,
but with an effective angle of attack αeff which includes the local induced angle of attack correction, as
given by (5.22). It is convenient (but not essential) to also assume that the local 2D airfoil has a linear c�(α)
dependence based on the thin airfoil theory result (D.36).

c� = c�α αeff = c�α (α+ αaero − αi) (E.4)

αaero(y) = αgeom − αL=0 (E.5)

Here αaero(y) is the aerodynamic twist, which is the angle of the local zero-lift line above the wing’s reference
axis, and includes both the geometric twist αgeom(y) and the zero-lift angle αL=0 pictured in Figure D.6. The
overall angle of attack α is the angle of the wing’s reference axis relative to the freestream direction.

The lift-curve slope is c�α = 2π for thin airfoils in inviscid flow, but will be slightly different for thick
airfoils and for viscous flow. The assumed linear c�(α) function (E.4) restricts the subsequent results to
unstalled wings. A more general c�(α) function could be used, at the cost of some increase in complexity.
This generalization will not be treated here.

Substituting the assumed c� function (E.4) into the 2D-flow Γ–c� relation (2.84) gives the following relation
between Γ and αi.

Γ = 1
2V∞ c c�α (α+ αaero − αi) (E.6)

This is in effect an integral equation for the unknown Γ(y), since αi depends on wwake, which itself depends
on the overall Γ(y) distribution via the superposition integral (E.2). This integral equation will be solved
next.

E.2 Fourier Solution

The unknown Γ(y) is expanded as a Fourier sine series in the angle coordinate ϑ = 0...π .

y(ϑ) =
b

2
cos ϑ

dy = − b

2
sinϑ dϑ

(E.7)

0 2

ϑ

2b/ b/
0π

y−

Γ(ϑ) = Γ(y(ϑ)) = 2bV∞

∞∑
n=1

An sin(nϑ) (E.8)

dΓ

dy
dy =

dΓ

dϑ
dϑ = 2bV∞

∞∑
n=1

nAn cos(nϑ) dϑ (E.9)

The integral in the downwash velocity expression (E.2) can then be evaluated for each Fourier term using
the Glauert integral (D.28).

wwake(ϑ) =
V∞
π

∞∑
n=1

nAn

∫ 0

π

cos(nϑ′)

cos ϑ′ − cos ϑ
dϑ′

= −V∞

∞∑
n=1

nAn
sin(nϑ)

sinϑ
(E.10)
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Figure E.2: Fourier terms of spanwise circulation distribution Γ, and of the resulting terms of down-
wash wwake. All term shape functions are plotted versus the physical coordinate y.

The series terms of the circulation (E.8) and resulting downwash (E.10) are diagrammed in Figure E.2.

Combining (E.3), (E.4), (E.6), and substituting the Fourier series (E.8) and (E.10) for Γ and wwake gives the
following algebraic relation between all the unknown An coefficients.

∞∑
n=1

An

(
sin(nϑ) +

c(ϑ)

4b
c�α n

sin(nϑ)

sinϑ

)
=

c(ϑ)

4b
c�α (α− αaero(ϑ)) (E.11)

This is in effect a flow-tangency condition which states that the total freestream + downwash velocity is
tangent to the airfoil zero-lift line at each spanwise point ϑ. It therefore represents infinitely many equations
for the infinitely many Fourier coefficients An.

In practice the series must be truncated to N terms, and the necessary N equations for the unknown
A1,A2 . . .AN coefficients are obtained by performing N separate weighted integrations of equation (E.11)
using suitable Wm(ϑ) weighting functions.∫ π

0

{
equation (E.11)

}
Wm(ϑ) dϑ ; m=1, 2 . . . N

This produces the following N×N linear system for the unknown coefficients.[
amn

]{
An

}
=

{
rm

}
(E.12)

where amn =

∫ π

0

(
sin(nϑ) +

c(ϑ)

4b
c�α n

sin(nϑ)

sinϑ

)
Wm(ϑ) dϑ (E.13)

rm =

∫ π

0

c(ϑ)

4b
c�α (α+ αaero(ϑ))Wm(ϑ) dϑ (E.14)

Picking Wm to be unit-impulse functions equally spaced across the 0 . . . π interval

Wm = δ(ϑm) ; ϑm = π
m

N+1
(E.15)

gives a collocation-type method where the matrix and righthand side elements can be evaluated immediately.

amn = sin(nϑm) +
c(ϑm)

4b
c�α n

sin(nϑm)

sinϑm
(E.16)

rm =
c(ϑm)

4b
c�α (α+ αaero(ϑ)) (E.17)
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Picking Wm to be the Fourier mode functions

Wm = sinmϑ (E.18)

gives an alternative Galerkin-type method. For arbitrary chord and overall aerodynamic twist distributions
c(ϑ), αaero(ϑ), this requires numerical integration of (E.13) and (E.14) for each matrix element amn and
righthand side element rm. Both Wm choices still require solution of the resulting linear system (E.12).

E.3 Force Calculation

After the An coefficients are determined by solving the linear system (E.12), the lift is obtained by the
spanwise integral of the local sectional lift obtained from the Kutta-Joukowsky relation (5.23).

L = ρV∞

∫ b/2

−b/2
Γ dy = ρV∞

∫ π

0
2bV∞

∞∑
n=1

An sin(nϑ)
b

2
sinϑ dϑ = π

1

2
ρV 2

∞ b2A1 (E.19)

By orthogonality of the sine functions (D.32), only the first A1 coefficient contributes to lift.

The lifting-line induced drag integral (5.24) can also be evaluated explicitly.

Di = −ρ

∫ b/2

−b/2
Γ wwake dy = ρ

∫ π

0

[
2bV∞

∞∑
n=1

An sin(nϑ)

][
V∞

∞∑
n=1

nAn
sin(nϑ)

sinϑ

]
b

2
sinϑ dϑ

Di = πb2
1

2
ρV 2

∞

∞∑
n=1

nA2
n =

(L/b)2

1
2ρV

2
∞ π

(1+δ) =
(L/b)2

1
2ρV

2
∞ π e

(E.20)

δ ≡ 2

(
A2

A1

)2

+ 3

(
A3

A1

)2

+ . . . =

∞∑
n=2

n

(
An

A1

)2

(E.21)

The induced drag factor 1+δ is sometimes replaced by the inverse of the span efficiency, 1/e, as indicated.

By choosing some suitable reference area Sref , with corresponding aspect ratio AR ≡ b2/Sref , the above lift
and induced drag can be put into convenient dimensionless forms.

CL ≡ L
1
2ρV

2
∞ Sref

= A1 πAR (E.22)

CDi ≡ Di
1
2ρV

2
∞ Sref

=
π

AR

∞∑
n=1

nA2
n =

C2
L

π AR
(1+δ) =

C2
L

π ARe
(E.23)

For a given specified lift and span, the above results show that the minimum induced drag is obtained if
δ=0, or e=1, or equivalently A2=A3 . . . = 0, and the wing has an elliptical circulation distribution. For
this case the downwash velocity and the induced angle are also constant everywhere across the wing.

Γ(y) = 2bV∞A1 sinϑ = 2bV∞
CL

π AR

√
1− (2y/b)2 (E.24)

wwake = −V∞A1 = −V∞
CL

π AR
(E.25)

αi =
CL

π AR
(E.26)

Although the uniform downwash and induced-angle relations (E.25) and (E.26) are strictly correct only for
an elliptical loading, they are useful as average-value estimates for a general planar wing.
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E.4 Elliptical Planform Case

E.4.1 Twisted elliptical wing
For the special case of a wing with an elliptical planform we have

c(ϑ) = c0 sinϑ (E.27)

Sref =
π

4
b c0 (E.28)

AR =
4

π

b

c0
(E.29)

where c0 is the center wing chord at y=0. In this case, with the Fourier mode weight functions (E.18), the
amn coefficient matrix (E.13) becomes diagonal.

amn =

{
π
2

(
1 + m

c�α
πAR

)
, m = n

0 , m �= n
(E.30)

This then gives an explicit expression for each circulation Fourier coefficient in terms of the overall effective
twist distribution α+ αaero(ϑ), via each righthand side vector element rm.

rm =

∫ π

0

c�α
πAR

(α+ αaero(ϑ)) sinϑ sinmϑ dϑ (E.31)

Am =
rm
amm

=
2

π

rm
1 +mc�α/(πAR)

(E.32)

E.4.2 Flat elliptical wing
For the case of an aerodynamically-flat elliptical wing, we in addition have

αaero = constant (E.33)

so that now only the first righthand side vector element and the first Fourier coefficient are nonzero.

rm =

{ π

2

c�α
πAR

(α+ αaero) , m = 1

0 , m �= 1
(E.34)

A1 =
r1
a11

=
c�α/(πAR)

1 + c�α/(πAR)
(α+ αaero) (E.35)

A2 = A3 = . . . = 0 (E.36)

Consequently, a flat elliptical wing has an elliptical loading at any overall angle of attack α away from stall.
From (E.22) its lift coefficient is

CL =
c�α

1 + c�α/(πAR)
(α+ αaero) (E.37)

so that the wing’s lift-curve slope is

dCL

dα
=

c�α
1 + c�α/(πAR)

	 c�α
1 + 2/AR

(E.38)

which is reduced from the 2D value c�α by the factor in the denominator. Although relation (E.38) is strictly
correct only for the flat elliptical wing, it is frequently used to estimate the lift-curve slope of wings with
more general planforms.
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Axis Transformations and Rotations
F.1 Axis Transformations

Any vector v can be given via its Earth-axes or body-axes components, denoted by superscripts ve or vb.

ve ≡

⎧⎪⎨⎪⎩
vex
vey
vez

⎫⎪⎬⎪⎭ vb ≡

⎧⎪⎨⎪⎩
vbx
vby
vbz

⎫⎪⎬⎪⎭
Transformation between the two sets of components consists of dot products with axis unit vectors. This is
equivalent to the matrix-vector products,

vb = ¯̄T
b

ev
e ve = ¯̄T

e

bv
b (F.1)

where the direction-cosine transformation matrices are composed of the unit vectors by rows.

¯̄T
b
e =

⎡⎢⎣− x̂e
b −

− ŷe
b −

− ẑeb −

⎤⎥⎦ ¯̄T
e
b =

⎡⎢⎣− x̂b
e −

− ŷb
e −

− ẑbe −

⎤⎥⎦ (F.2)

Figure F.1 illustrates relations (F.1), with v being an aircraft’s velocity as an example.
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Figure F.1: Transformations of an airplane’s velocity vector v components from Earth to body axes,
and vice versa, via dot products with axis unit vectors.
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Each matrix undoes the action of the other, so they must be inverses.

vb = ¯̄T
b
e v

e = ¯̄T
b
e

[
¯̄T
e
b v

b
]

=
[
¯̄T
b
e
¯̄T
e
b

]
vb

→ ¯̄T
b

e
¯̄T
e

b = ¯̄I

¯̄T
b

e = ¯̄T
e

b

−1

(F.3)

This implies that they can also be composed of the opposing unit vectors by columns,

¯̄T
b

e =

⎡⎢⎣ | | |

x̂b
e ŷb

e ẑbe

| | |

⎤⎥⎦ ¯̄T
e

b =

⎡⎢⎣ | | |

x̂e
b ŷe

b ẑeb

| | |

⎤⎥⎦ (F.4)

and also that the inverse of any cartesian transformation matrix is equal to its transpose.

¯̄T
−1

= ¯̄T
T

(F.5)

Any vector operation must be performed in common axes. For example, the operations ue ·ve or ue×ve are
valid, while evaluating ue · vb or ue ×vb gives nonsensical results. The latter two operations would need to
be reformulated as ue · ( ¯̄Te

b v
b) and ue × ( ¯̄T

e

b v
b) to be valid.

F.2 Axis Rotation Relations

A unit vector can change only its direction (not magnitude) via rotation. This is illustrated in Figure F.2
which shows the rates of change of the body-axis unit vectors as a result of the body rotation rate Ω, where
each unit-vector rate is orthogonal to that same unit vector. Using the convenient dot notation for the time
derivative, ˙( ) ≡ d( )/dt, the unit vector rates (in some frame) are explicitly given by

˙̂xb = Ω× x̂b
˙̂yb = Ω× ŷb
˙̂zb = Ω× ẑb

(F.6)

where Ω is the rotation rate of the x̂b, ŷb, ẑb vector triplet in that same frame.

yb

xb

zb

zb

xb

yb
ΩΩ

Figure F.2: Body rotation rate Ω gives rates of change of its body-axis unit vectors, all seen in some
arbitrary frame.
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An alternative way to write any cross product is as a matrix-vector product,

Ω× v = Ω
⇒
v

where the three components of the first vector Ω are arranged in the antisymmetric matrix Ω
⇒

:

Ω =

⎧⎪⎨⎪⎩
Ωx

Ωy

Ωz

⎫⎪⎬⎪⎭ → Ω
⇒

=

⎡⎢⎣ 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

⎤⎥⎦ (F.7)

The rate definitions (F.6) can therefore be given alternatively as follows.

˙̂xb = Ω
⇒
x̂b

˙̂yb = Ω
⇒
ŷb

˙̂zb = Ω
⇒
ẑb

(F.8)

When these are assembled by columns into a single matrix equation and expressed in Earth axes,⎡⎢⎣ | | |

˙̂xe
b

˙̂ye
b

˙̂zeb
| | |

⎤⎥⎦ =

⎡⎢⎣ Ω
⇒e

⎤⎥⎦
⎡⎢⎣ | | |

x̂e
b ŷe

b ẑeb

| | |

⎤⎥⎦
they become an expression for the rate of change of the transformation matrix ¯̄T

e

b .

˙̄̄
T

e
b = Ω

⇒e ¯̄T
e

b (F.9)

Post-multiplying this relation by ¯̄T
b
e gives the rotation rate matrix in terms of the transformation matrix

and its time rate.

˙̄̄
T

e
b
¯̄T
b
e (F.10)

This Ω
⇒e must be antisymmetric as required by its definition (F.7). Its three independent elements (3,2),

(1,3), (2,1) are the respective Ωe
x,Ω

e
y,Ω

e
z components of the rotation rate vector Ωe.

Relations (F.9) and (F.10) are used in Section 9.6.2 for deriving the equations of motion of a maneuvering
aircraft.





Bibliography

[1] COESA Working Group. US standard atmosphere, 1976. Technical Report NAOO-S/T 76-1562,
NOAA, Oct 1976.

[2] G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, 1979.

[3] M. Gad-el Hak. Stokes’ Hypothesis for a Newtonian, isotropic fluid. Journal of Fluids Engineering,
117(1):3–5, 1995.

[4] J. Katz and A. Plotkin. Low-Speed Aerodynamics, 2nd Edition. Cambridge University Press, Cam-
bridge, U.K., 2001.

[5] M. Drela. XFOIL: An analysis and design system for low Reynolds number airfoils. In T.J. Mueller,
editor, Low Reynolds Number Aerodynamics. Springer-Verlag, Jun 1989. Lecture Notes in Engineer-
ing, No. 54, http://web.mit.edu/drela/Public/web/xfoil.

[6] M. Drela and M.B. Giles. Viscous-inviscid analysis of transonic and low Reynolds number airfoils.
AIAA Journal, 25(10):1347–1355, Oct 1987.

[7] R.J. McGhee and W.D. Beasley. Low-speed aerodynamic characteristics of a 17-percent thick airfoil
section designed for general aviation applications. Technical Note D-7428, NASA, Dec 1973.

[8] H. Glauert. The Elements of Aerofoil and Airscrew Theory, 2nd Edition. Cambridge University Press,
Cambridge, U.K., 1959.

[9] R.C. Lock and B.R. Williams. Viscous-inviscid interactions in external aerodynamics. Progress in
Aerospace Sciences, 24:51–171, 1987.

[10] W.C. Reynolds. Fundamentals of turbulence for turbulence modeling and simulation. In AGARD
Lecture Series, pages 1–66, Apr 1987. AGARD-LS-86.

[11] L. (Ed.) Rosenhead. Laminar Boundary Layers. Dover, New York, 1963.

[12] H. Schlichting. Boundary-Layer Theory. McGraw-Hill, New York, 1979.

[13] S. Sato. The Power Balance Method for Aerodynamic Performance Assessment. PhD thesis, MIT, June
2012.

[14] F.H. Clauser. Turbulent boundary layers in adverse pressure gradients. Journal of the Aeronautical
Sciences, 21(2):91–108, Feb 1954.

[15] D.E. Coles. The law of the wake in the turbulent boundary layer. Journal of Fluid Mechanics, 1:193–
226, 1956.



270 Bibliography

[16] R.L. Simpson, Y.T. Chew, and B.G. Shivaprasad. The structure of a separating turbulent boundary
layer. Part 1. Mean flow and Reynolds stresses. Journal of Fluid Mechanics, 113:23–51, 1981.

[17] R.H. Liebeck. A class of airfoils designed for high lift in incompressible flow. Journal of Aircraft,
10:610–617, Oct 1973.

[18] J.D. McLean. Understanding Aerodynamics. John Wiley and Sons, West Sussex, UK, 2013. ISBN
978-1-119-96751-4.

[19] T. Cebeci and A.M.O. Smith. Analysis of Turbulent Boundary Layers. Academic Press, New York,
1974.

[20] T. Cebeci and P. Bradshaw. Momentum Transfer in Boundary Layers. McGraw-Hill, New York, 1977.

[21] B. Thwaites. Approximate calculation of the laminar boundary layer. Aero. Quart., 1:245, 1949.

[22] F.M. White. Viscous Fluid Flow. McGraw-Hill, New York, 1974.

[23] J.C. Le Balleur. Strong matching method for computing transonic viscous flows including wakes and
separations. La Recherche Aerospatiale, 1981-3:21–45, 1981. English Edition.

[24] D.L. Whitfield, T.W. Swafford, and J.L. Jacocks. Calculation of turbulent boundary layers with sepa-
ration and viscous-inviscid interaction. AIAA Journal, 19(10):1315–1322, Oct 1981.

[25] M.R. Head. Entrainment in the turbulent boundary layer. R & M Report 3152, Aeronautical Research
Council, HMSO, London, 1958.

[26] J.E. Green, D.J. Weeks, and J.W.F. Brooman. Prediction of turbulent boundary layers and wakes in
compressible flow by a lag-entrainment method. R & M Report 3791, Aeronautical Research Council,
HMSO, London, 1977.

[27] J.H. McMasters, J.P. Crowder, and P.E. Robertson. Recent applications of vortex generators to wind
turbine airfoils. AIAA-85-5014, Jun 1985.

[28] S. Goldstein. On laminar boundary layer flow near a position of separation. Quart. J. or Mech. and
Appl. Math., pages 1–43, 1948.

[29] L.B. Wigton and M. Holt. Viscous-inviscid interaction in transonic flow. AIAA-81-1003, 1981.

[30] A.E.P. Veldman. The calculation of incompressible boundary layers with strong viscous-inviscid in-
teraction. In Conference on Computation of Viscous-Inviscid Interactions, 1980. AGARD-CP-291.

[31] M.B. Bieterman, R.G. Melvin, F.T. Johnson, J.E. Bussoletti, D.P. Young, W.P. Huffman, C.L. Hilmes,
and M. Drela. Boundary layer coupling in a general configuration full potential code. Technical Report
BCSTECH-94-032, Boeing, Aug 1994.

[32] Jens Osterlund. Experimental studies of zero pressure-gradient turbulent boundary-layer flow. Tech-
nical report, KTH, Stockholm, Sweden, Dec 1999. http://www.mech.kth.se/ jens/zpg/ .

[33] S.F. Hoerner. Fluid-Dynamic Drag. Hoerner Fluid Dynamics, Vancouver, WA, 1965.

[34] L.C. Squire and A.D. Young. The calculation of profile drag of aerofoils. R & M Report 1838,
Aeronautical Research Council, HMSO, London, 1938.

[35] H.L. Reed and D. Saric, W.S.and Arnal. Linear stability theory applied to boundary layers. Annual
Reviews of Fluid Mechanics, 28, 1996.



Bibliography 271

[36] W.S. Saric, H.L. Reed, and E.J. Kerschen. Boundary layer receptivity. Annual Reviews of Fluid
Mechanics, 34, 2002.

[37] A.M.O. Smith and N. Gamberoni. Transition, pressure gradient, and stability theory. Report ES 26388,
Douglas Aircraft Co., 1956.

[38] J.L. van Ingen. A suggested semi-empirical method for the calculation of the boundary layer transi-
tion region. Report VTH-74, Delft University of Technology, Dept. of Aerospace Engineering, the
Netherlands, 1956.

[39] B.J. Abu-Ghannam and R. Shaw. Natural transition of boundary layers — The effects of turbulence,
pressure gradient, and flow history. Journal of Mechanical Engineering Science, 22(5):213–228, 1980.

[40] I. Tani. Low speed flows involving bubble separations. Progress in Aeronautical Sciences, 5:70–103,
1964.

[41] M. Gaster. The structure and behavior of laminar separation bubbles. In Separated Flows, AGARD CP
4, 1969.

[42] R.J. McGhee, B.S. Walker, and B.F. Millard. Experimental results for the Eppler 387 airfoils at low
Reynolds numbers in the Langley Low-Turbulence Pressure Tunnel. Technical Memorandum 4062,
NASA, Oct 1988.

[43] M. Drela. Low-Reynolds number airfoil design for the MIT Daedalus prototype: A case study. Journal
of Aircraft, 25(8):724–732, Aug 1988.

[44] R.H. Liebeck. Laminar separation bubbles and airfoil design at low Reynolds numbers. AIAA-92-
2735-CP, June 1992.

[45] M.S. Selig. Low Reynolds number airfoil design lecture notes. In VKI Lecture Series – Applied Vehicle
Technology Panel. NATO Research and Technology Organization, Nov 2003.

[46] A. Gopalarathnam, B.A. Broughton, B.D. McGranahan, and M.S. Selig. Design of low Reynolds
number airfoils with trips. Journal of Aircraft, 40(4):768–775, Jul-Aug 2003.

[47] I. Kroo. Drag due to lift: Concepts for prediction and reduction. Annual Reviews of Fluid Mechanics,
33:587–617, 2001.

[48] A.A. Nikolski. On lift properties and induced drag of wing-fuselage combination. Technical Report
NASA RE-5-1-59W, NASA, 1959.

[49] R.T. Whitcomb. A design approach and selected wind-tunnel results at high subsonic speeds for wing-
tip mounted winglets. Technical Note D-8260, NASA, Jul 1976.

[50] H. Ashley and M.T. Landahl. Aerodynamics of Wings and Bodies. Dover, New York, 1965.

[51] E.C. Polhamus. A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction
analogy. Technical Note D-3767, NASA, Dec 1966.

[52] E.C. Polhamus. Application of the leading-edge-suction analogy of vortex lift to the drag due to lift of
sharp-edge delta wings. Technical Note D-4739, NASA, Aug 1968.

[53] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Dover, New York, 1996.
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Adiabatic flow, 12
Aerodynamic categories, 21
Aerodynamic influence coefficients, 114, 133, 159
Aerodynamic twist, 260
Aircraft motion, 123, 145

body point, 124
control vector, 206
equations, 206
Euler angles, 202
in unsteady panel method, 149
lateral dynamics, 208
linearized equations, 207
local freestream, 124
longitudinal dynamics, 208
orientation, 202
orientation rate, 204, 267
position, 202
position rate, 204
rotation rate, 123, 202
state vector, 206
velocity, 123, 202

Airfoil
circulation, 249
compressible flow, 175
drag, 249
far-field, 40, 245
harmonic motion, 156
lift, 248
Mach number effects, 197
separation bubble, 95
stall mechanism, 52
step response, 154
supercritical, 194
unsteady, 152

Angle of attack
aerodynamic, 105
in lifting line, 105
in Prandtl-Glauert transformation, 173
in small-disturbance flows, 169
relation to aircraft velocity, 123, 203

Angular momentum of aircraft, 205

Apparent mass, 154, 155, 157
Aspect ratio

in induced drag coefficient, 113, 262
in lifting-line theory, 106
in Prandtl-Glauert transformation, 173
of wing, 104

Atmospheric properties, 1
Axes, 124

body, 201
Earth, 201
geometry, 124
stability, 124
transformations, 265
wind, 125

Axisymmetric
boundary layer, 74
flow about body of revolution, 139
supersonic body, 188

Baroclinic, 18
Bernoulli equation, 20

compressible, 21
in airfoil far-field model, 248
incompressible, 20
unsteady, 145

Biot-Savart integral, 27, 131
Body of revolution, 139

supersonic, 188
Boundary conditions, 8, 25

flow tangency, 8, 132
freestream, 166
heat flux, 8
in unsteady flow, 11, 145
in vortex lattice method, 132
no-slip, 8
temperature, 8

Boundary layer, 47, 57
adverse pressure gradient, 64
approximations, 61
axisymmetric, 74
Blasius flow, 72
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classical problem, 80
closure relations, 81
coupling with potential flow, 87
displacement effect, 48
displacement thickness, 50, 58, 60
dissipation, 69
dissipation coefficient, 66, 90
dissipation integral, 66, 67, 69
drag prediction, 90
edge, 48
edge Mach number, 65
equations, 61
equilibrium flow, 73
evolution, 67
favorable pressure gradient, 64
finite-difference solution methods, 70, 80
flat-plate flow, 72
friction drag, 68
Goldstein separation singularity, 87
incipient-separation flow, 73
incompressible, 62
integral kinetic energy equation, 65
integral momentum equation, 64
integral solution methods, 80
kinetic energy defect, 59
kinetic energy thickness, 59
laminar, 57
lateral divergence, 76
mass defect, 58
momentum defect, 59
momentum thickness, 59, 60
N factor, 93

critical, 93
on swept wing, 78
power-law, 70, 81
pressure, 48
pressure drag, 68
pressure gradient, 63
receptivity, 92
Reynolds number independence, 83
self-similar, 71
separation, 64, 71
shape parameter, 65, 71
shear gradient, 64
shear stress, 61
skin friction coefficient, 65, 90
stagnation-point flow, 72
Thwaites method, 81, 84
transition, 57, 92

turbulent, 57
two-equation methods, 85
velocity, 48
wall layer, 62
wall shear stress, 62
wall transpiration model, 50
wedge flows, 72

Branch cut
of doublet sheet strength, 29
of vortex potential, 33

Breguet relation, 197

Characteristics, 183
Compressibility, 159

definition, 159
Computational Fluid Dynamics (CFD), 23, 35, 100,

159, 168
Conservation, 6

energy, 7
enthalpy, 7
mass, 6
momentum, 7

Control derivative, 127, 136, 209
Control volume, 3

in far-field force analysis, 101
in thin airfoil theory, 252

Critical Mach number, 194
Crocco relation, 19
Curl, 24

D’Alembert’s paradox, 100
Delta wing, 141
Direction-cosine matrix, 265

in terms of Euler angles, 203
Displacement Body model, 49
Displacement effect, 48
Displacement thickness, 58, 60

in axisymmetric flow, 75
Dissipation coefficient, 66, 90

in turbulent flow, 85
role in profile drag reduction, 85

Dissipation integral, 66, 67
relation to drag, 69
role in profile drag reduction, 86

Divergence, 24
of 3D vortex sheet strength, 28

Doublet
in slender body theory, 140

Doublet sheet, 29, 244
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equivalence with vortex sheet, 30
in lifting surface theory, 127
potential, 33
potential jump, 244

Downwash
in Trefftz plane, 113
on wing, 104

Drag, 99, 100
coefficient, 113, 125, 262

2D airfoil, 40
definition, 113

far-field, 106
friction, 99
induced, 106, 107, 109, 110, 112, 115, 130

minimum, 116–118
of swept wing, 199
parameterization, 126
polar, 197
prediction, 88
pressure, 99, 100
profile, 106, 107
wave

in full potential solution, 167
in supersonic flow, 184
in transonic flow, 163

Dynamic pressure, 88, 209
definition, 12
in drag estimation, 90
on swept wing, 199

Eddy viscosity, 61
on swept wing, 78
turbulence models, 63
variation across boundary layer, 62

Energy equation
integral form, 7

Enthalpy, 2
Enthalpy equation, 8

convective form, 8
integral form, 7

Entrainment equation, 85
Entropy, 13
Equivalent Inviscid Flow, 47

Falkner-Skan
parameters, 71
transformation, 71
velocity profiles, 71

Far-field, 38

expansion, 39
in slender body theory, 138

Far-field, 2D, 38, 43
airfoil, 40, 245
circulation, 40, 249
compressible, 181
source, 40, 250
x-doublet, 41
z-doublet, 42

Far-field, 3D, 44
compressible, 182
doublet, 46
source, 44, 45

Field point, 24, 25, 185, 187
First Law of Thermodynamics, 7
Flight dynamics, 201

angular momentum equation, 205
control vector, 206
Dutch-roll system, 216
eigenmodes, 207
equations of motion, 206
force and moment coefficients, 209
lateral subset, 214
linear momentum equation, 205
linearized equations of motion, 207
longitudinal subset, 211
momentum equation, 205
phugoid system, 212
roll-subsidence system, 215
short-period system, 212
spiral system, 215
stability and control derivatives, 209
state vector, 206

Flow tangency, 132
Flux, 4

enthalpy flux, 4
internal energy flux, 4
mass flux, 4
momentum flux, 4

Force
coefficient, 135
far-field, 101
linearization, 127
near-field, 99
parameterization, 126
per unit area, 5
per unit volume, 5

Form factor, 89
Frames of reference, 123, 201
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in unsteady flow, 144
Free shear layer, 60
Freestream

in far-field expansion, 39
in flow-field representation, 25
in lifting line theory, 259
in singularity method, 23
in thin airfoil theory, 251
modeling non-uniqueness, 37

Full potential equation, 166
limitations, 167

G-beta locus, 73
in boundary layer calculation method, 84
in boundary layer dissipation, 85

Göthert’s rule, 175
Gas constant, 2
Gauss’s Theorem, 7, 31, 109, 112
Gibbs relation, 13
Glauert integral, 255, 260
Goldstein separation singularity, 87

Heat conduction
Fourier’s Law, 6

Heat conductivity, 6
Heating

per unit area, 6
per unit volume, 5

Horseshoe vortex, 131
supersonic, 190
velocity field, 131

Hyperbolic radius, 185

Ideal gas law, 2
Images, 34

for wind tunnel corrections, 235
Incompressibility, 34

definition, 16
in unsteady flow, 144

Induced angle, 104
Infinite swept wing, 178
Integral momentum theorem, 101
Internal energy, 2
Isentropic flow, 13
Isentropic relations, 14
Isothermal, 17

Küssner function, 154
Kernel function, 25, 32

of horseshoe vortex, 132

Kinetic energy defect, 59
Kinetic energy shape parameter, 66

equation, 85
Kinetic energy thickness, 59

in axisymmetric flow, 75
Knudsen number, 1
Kutta condition, 37, 128, 166
Kutta-Joukowsky theorem, 40, 249

applied locally on vortex sheet, 42, 129
in lifting-line theory, 262
in supersonic flow, 184
in vortex lattice method, 134

Laminar to turbulent transition, 57, 92
Laplace equation, 25, 171
Lateral dynamics, 214
Leading edge suction, 129, 134
Leading edge vortex, 141
Lift, 100

coefficient, 113, 125, 262
2D airfoil, 40
definition, 113
of unsteady airfoil, 154

far-field, 111, 112
near-field, 100
of slender body, 139, 140
parameterization, 126

Lifting line
physical model, 104

Lifting line theory
calculation, 259

Lifting surface theory, 127
forces, 129

Line, 26
source, 26
vortex, 26

Linear momentum of aircraft, 205
Longitudinal dynamics, 211
Low speed flow, 16
Lumping, 25, 134

in unsteady flow, 143

Mach cone, 185
Mach drag rise, 197
Mach number, 10, 16

critical (transonic flow onset), 194
definition, 15
edge of boundary layer, 65
normal to shock wave, 163
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Mass defect, 49, 51, 58
in wind tunnel corrections, 233
of wake, 51

Mass equation
integral form, 6

for 2D airfoil, 247
Mean aerodynamic chord, 125
Mean free path, 1
Moment

coefficient, 125, 135
linearization, 127
of slender body, 140
parameterization, 126

Momentum defect, 59, 108
in wind tunnel corrections, 233

Momentum equation, 8
convective form, 8
far-field force, 101
integral form, 7, 101

for 2D airfoil, 247
Momentum thickness, 59, 60

in axisymmetric flow, 75
measurement in wake, 239
Squire-Young correction, 91, 240

Momentum thickness Reynolds number, 74, 81, 95

Navier-Stokes equations, 8, 17, 61
Newton’s Third Law, 7
Newtonian fluid, 5
Non-dimensionalization, 10

Panel method, 23, 100
applied to wing wake, 114, 118
in unsteady flow, 149

Perfect gas, 2
Perturbation potential, 38

far-field, 39
first-order (Prandtl-Glauert) equation, 171
incompressible (Laplace) equation, 171
normalized, 170
of slender body, 137
second-order equation, 170
transonic small-disturbance equation, 171
unsteady, 144

Perturbation velocity, 130, 143, 168
Pitching moment coefficient

definition, 256
Potential, 25, 32

2D superposition integral, 32

3D superposition integral, 32
branch cut, 33
of supersonic line source, 187

Potential jump, 131
of horseshoe vortex, 131

Prandtl number, 1, 10
Prandtl wing theory, 259
Prandtl’s rule, 176
Prandtl-Glauert equation, 171

applied to 2D airfoil, 175
applied to 3D wing, 176
applied to infinite swept wing, 179
interpretation, 173
solution procedure, 174
supersonic flow, 182

Prandtl-Glauert transformation, 173
Pressure coefficient

definition, 12
Profile drag

calculation, 90
in lifting-line theory, 106
in Trefftz-Plane, 107
measurement, 239
of 2D airfoil, 249
prediction, 88
related to kinetic energy defect, 69
related to momentum defect, 68

Quasi-steady flow, 126
definition, 148

Ratio of specific heats, 3, 10
Reduced frequency, 11
Reynolds number, 10, 11

freestream, 95
momentum thickness, 74, 81, 95

Reynolds stress, 62

Scales, 9
Self-similar boundary layer, 70
Separation bubble, 95

loss, 96
Shape parameter, 65, 71

in axisymmetric flow, 75
in G-beta locus, 84
kinetic energy, 66

Shear layer, 11, 60, 62
Shear stress, 61, 62, 66

in wall layer, 62
Shear velocity, 73
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Shed vorticity, 147
Sheet, 26

doublet, 29
jumps, 33
source, 26, 36
vortex, 26, 36, 37

Shock wave, 163
analysis for transonic airfoil, 196
drag, 163
losses, 163
normal Mach number, 163
on transonic airfoil, 160

Sideforce, 100
coefficient, 125
far-field, 111, 112
near-field, 100
parameterization, 126

Sideslip angle
relation to aircraft velocity, 123, 203

Singularity, 25
Skin friction coefficient, 65, 90
Slender body theory, 136
Small-disturbance flow, 159, 169

definition, 169
validity, 172

Source
in slender body theory, 140
line, 26

supersonic, 187
point, 27

supersonic, 186
sheet, 36

Source density, 24
definition, 24
in compressible flow, 34, 159
in incompressible flow, 34
in unsteady flow, 143

Source sheet
in thin airfoil theory, 252
infinite, 243
velocity jump, 244

Span efficiency, 113, 262
Specific fuel consumption, 198
Specific heat, 2
Speed of sound, 15
Squire-Young formula, 91, 240
Stability derivative, 127, 136, 209

axis transformation, 210
specification, 210

Stagnation
state, 15
total density, 15
total enthalpy, 4
total pressure, 15

Stall mechanism, 52
Stokes’s Theorem, 31
Strain rate, 5
Stress

Reynolds, 62
shear, 61
viscous, 61

Strouhal number, 11
Substantial derivative, 8
Sutherland’s Law, 1

Theodorsen function, 156
Thin airfoil theory, 251

application to unsteady flow, 152
lift coefficient, 255
moment coefficient, 256
second-order solution, 257

Thwaites method, 81, 84
Tollmien-Schlichting waves, 93
Total pressure, 15

coefficient, 15
Transition

bypass, 93
envelope method, 93
forced, 92
in separation bubble, 95
natural, 92
prediction, 92

Transonic flow, 194
airfoil, 194
critical Mach number, 194
definition, 194
drag rise, 194
onset, 194
shock wave, 194
small-disturbance, 171

Transonic small-disturbance equation, 171, 196
Transpiration velocity, 51
Trefftz plane, 102, 106, 108, 112, 130

in supersonic flow, 191, 192
in vortex lattice method, 135

Turbulence modeling, 63

Units, 9
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natural, 9
standard, 9

Unsteady airfoil, 152
general motion, 155
harmonic motion, 156
step response, 154

Unsteady flow, 10
Bernoulli equation, 145
parameters, 10
reduced frequency, 10
shed vorticity, 147
sources of, 149
wake potential jump, 147

US Standard Atmosphere, 1

Velocity, 3
Viscosity, 5
Viscous decambering, 52
Viscous stress, 5, 61
Viscous/inviscid coupling, 87
Von Karman momentum equation, 64, 91
Vortex, 18

line, 26
point (vorton), 27
sheet, 36, 37
tilting, stretching, 18

Vortex lattice method, 23, 130
forces, 134

Vortex lift, 141
Vortex sheet

average velocity, 147
in lifting surface theory, 127
in thin airfoil theory, 252
in unsteady airfoil application, 153
infinite, 243
potential jump, 33
pressure jump, 103, 128

in unsteady airfoil application, 153
in unsteady flow, 147

velocity jump, 244
Vortex wake, 102

non-planar, 120
potential jump, 102, 109, 118

in unsteady flow, 147
roll-up, 102, 150
sheet strength, 109

Vorticity, 17, 24
at high Reynolds number, 35
definition, 24

Helmholtz equation, 18, 35, 144
in unsteady flow, 143
shed in unsteady flow, 148

Wagner function, 154
Wake, 51

displacement effect, 51
kinetic energy defect, 69
mass defect, 51
momentum defect, 66, 69
of airfoil, 57

Wake rake, 239
Wall Transpiration model, 50
Wave drag

due to lift (2D), 184
due to lift (3D), 193
due to thickness (2D), 184
due to thickness (3D), 189
of normal shock, 163

Wave equation, 185
Wedge flows, 72
Wetted area, 88
Wind tunnel

2D images, 224
2D open-jet effects, 229
2D profile drag measurement, 239
2D wall effects, 224
3D images, 233
3D open-jet effects, 236
3D wall effects, 235
direct force measurement, 221

Wind tunnel corrections, 221
Wing, 125

drag, 199
lifting-line model, 259
reference area, 125
swept, 77

optimum, 200
transonic

swept, 198
unswept, 198

Winglet, 120
Work

per unit area, 6
per unit volume, 5

Zero-lift angle, 256, 260
Zero-lift line, 260
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