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» PreJ face

THIS brief account of the main principles of the science of
aerodynamics and the historical development of aerodynamical
thinking was planned to appear in 1953, the anniversary year of
powered flight. The pressure of business prevented me from
finishing the manuscript on the date originally planned, but I
am now happy that this little book will come to the reader after
the flood of publications devoted to the magnificent accomplish-
ments of the first half-century of the air age has subsided.

In this volume my purpose is not to present a sentimental or
emotional review of the achievements of aviation in the past
fifty years but rather, first, to give some idea of aerodynamic
thought to readers familiar with the facts of aviation but less
familiar with the underlying theories; second, to remind persons
engaged in the study or professional use of aerodynamic science
how much mental effort was necessary to arrive at an under-
standing of the fundamental phenomena, which the present-day
student obtains readily from books and lectures,

I want to express my sincere appreciation for the help and
assistance that I received from many persons. First of all, both in
the preparation of the lectures that led to the publication of this
book and in the preparation of the final manuscript, I was
splendidly supported by William R. Sears, Mabel R. Sears, and
many members of the Graduate School of Aeronautical Engi-
neering and of the Faculty of Cornell University. Professor Itiro
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PREFACE

Tani contributed many data and references and made special
studies on some of the questions touched on in the book. I am
grateful to Dr. Frank J. Malina for reading the manuscript.
Many of his valuable suggestions have been included. Finally,

THEODORE VON KARMAN
Pasadena, California
March 1954
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CHAPTER 1

» Aerodynamic Research

before the Era of Flight

IN 1953 we celebrated the golden anniversary of human flight.
The development of the flying machine from the rather primitive
contraption of the Wright brothers to the complex and efficient
high-speed airplane of today has been most spectacular. Yet
when I fly in bumpy weather or when I am forced to wait hours
at an airport because of the weather—or because of the ignorance
of the weatherman—I wonder whether our achievement is really
so miraculous. We have, nevertheless, succeeded in passing
through the sonic barrier, and the records for endurance and
nonstop distance are far beyond the figures I would have thought
possible forty-five years ago when I first became interested in
aeronautical research.

When, however, I recall the state of knowledge at that time
concerning the mechanics of flight and the theory of airflow, it
appears to me that, parallel to the development of the art of
aeronautical engineering, the science of aerodynamics has tra-
versed a path scarcely less significant. Our knowledge of the rea-
sons “why we can fly” and “how we fly” has increased both in
scope and depth in a rather impressive way.

A short summary of the fundamental aspects of this scientific

nraoracg +L o shiiast ~F 1L ~1. AA~ Lanle Lo Lo

Pluslbba I.S LiIc buUJCLL O1 l.lll.b VUlulll.C J.Vla.lly PDOOKS nave peen
published on the history of aviation—the history of the conquest
of the air. In this book, however, I am not concerned with the
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AERODYNAMICS

progress made in aircraft structures—or, more generally, in air-
craft design. Instead I want to report on the progress made in
aerodynamics, which is one of the branches of theoretical physics.
My subject 1s not as spectacular as some other branches of theo-
retical physics which have become extremely popular for several

Some branches of theoretical physics lend themselves to specu-
lation on the origin and true nature of the universe, others to
questioning of philosophical beliefs, such as the laws of causality,
commonly accepted for centuries. Finally, fundamental progress
in physics has led to technical applications of horrifying nature
and energy production of unheard-of magnitudes. The reader
will guess that I have in mind, in particular, the theory of rela-
tivity, quantum mechanics, and nuclear physics. We aerody-
namicists were always more modest and did not attempt to
change basic beliefs of the human mind or to interfere with the
business of the good Lord or divine Providence!

Nevertheless, I believe that the development of aerodynamic
science during this half-century of human flight should be of
general interest beyond the limits of aeronautical circles. It is a
rare example of co-operation between “men of mathematics”—
as my friend Eric T. Bell calls them—and creative engineers.
Mathematical theories from the happy hunting grounds of pure
mathematicians were found suitable to describe the airflow pro-
duced by aircraft with such excellent accuracy that they could
be applied directly to airplane design. This is a remarkable fact
if we compare it with an opinion expressed by an expert in 1879,
which I found in the fourteenth annual report of the Aeronautical
Society of Great Britain, the predecessor of the present Royal
Aeronautical Society: ‘“Mathematics up to the present day have
been quite useless to us in regard to flying.”

Credit must be given to the builders of aerodynamic theory in

Laolf mmcbzacr
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now untrue, and what is much more, even engineers and aircraft
designers admit that it is no longer true.

2
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RESEARCH BEFORE FLIGHT

Period of Legend and Artistic Imagination

Every historian of aviation starts with legendary examples,
which at least show mankind’s yearning to fly like the birds.
Most of these well-known stories, however, do not contain many
elements of aerodynamic thinking or experience. We have, for
example, the myth of Daedalus and Icarus. The only techno-
logical factor here is that the fliers did not know about heat-
resistant materials; the aerodynamic aspect of the flight is not

rl Tariy ccPr‘l (94
LI Lo d - J

David and King of Israel, quotes the words of Agur, the son of
Jakeh, saying:

In t]’\P B;blp (prnvPrhc 3 Qoloman can of
s a 9 W \-l- A VST Srh BT ey i

o: 18, 1g9), Solomon, son o
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There be three things which are too wonderful for me,
Yea, four which I know not.

As the first he lists:

The way of an eagle in the air.

Here man at least admitted
his ignorance of aerodynamics.
‘(The other three ‘“things” I
shall let the reader look up.
The last is frequently quoted.)

A story told in one of the
Eddas, of Norse mythology,
shows certain observations of
an aerodynamic nature. It
scems that one Wayland, a

smith whose trade was manu-

- Y facturing weapons, also con-

(:( %“ﬂ,-\ structed wings to be attached

LIy || o bis body. He apparently
& :

e -] was a very vicious fellow;

e
% "\ \ ‘P.'.'.{-L*!'J Cé-'m

Fig. 1. Wayland the Smith (abore) in
his ““feather-dress.” (From K. M. Buck,
The Wayland-Dietrich Saga [London, aloft and let them drop from

1924].) a height in order to kill them.

3

since, as shown in the drawing
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AERODYNAMICS

Now, according to the Saga, written perhaps in the thirteenth
century (Ref. 1) but originating in the fifth century or earlier,
Wayland after finishing his first set of wings planned with his
brother Egil to try them out, i.e., to make a test flight.
His brother asked him, “How shall I do this? I have no knowl-
edge in this field.”
Quoth Wayland, slowly and with emphasis,

“Against the wind shalt thou rise easily,

Then, when thou wouldst descend, fly with the wind.”
Egil put on as told the feather-dress,

And soon flew high in air swift as a bird,

Lightly and easily both high and low.

But when he would alight upon the ground,

Turning, he flew full quickly with the wind,

Was headlong borne to earth, and in his fall

Had much ado to save his neck from harm.

This 1s what is said in the Eddas.

Then Egil asked Wayland, “How is this? Your wings are good
for take-off but not good for landing! I must confess,” he added,
“that if they were really good, I would have kept them.”

Wayland answered:

“When I bade

That thou shouldst with the wind make thy descent
I told thee wrong. ... I did not trust thee quite.

Remember this, that every bird that flies
Rises against the wind and so alights.”

If we proceed from legend to history, we find that many great
men with artistic imagination studied the fundamentals of bird
flight and speculated on the possibilities of human flight. The
an excellent example of such studies (Ref. 2).

It seems that he considered two methods of flight. One con-

¢
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RESEARCH BEFORE FLIGHT

sisted of imitation of bird flight. In Fig. 2 we see a man equipped
with a pair of wings, beating them like a bird. Today we call an
aircraft of this type an ornithopter. The other method was based

Fig. 2. Leonardo da Vinci’s design of an ornithopter.

on a screw—we call it the screw of Archimedes—which would
penetrate the air (Fig. 3). This is the predecessor of the present-
day helicopter. | The characteristic feature underlying both pro-
posed systems was the general belief that sustentation of the
weight of the body and propulsion should be accomplished by
the same mechanism. This is true for the bird, whose propuision
sustentation are produced by the motion of the same wings.
It is also correct in the case of the helicopter. The idea of imi-
tating bird flight was predominant for centuries in the minds of

V]
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AERODYNAMICS

inventors. Some, however, recognized the limitations of mere
imitation of nature. As Hiram Maxim, one of the British pioneers
in aeronautics once remarked, “The successful locomotive was
not based upon an imitation of an elephant.”

| o . 1 TVn [P I RS I
I‘Jg. 5. Lcullaluau uada vihel s

design of a helicopter.

Fundamental Notions: Newton’s Law of Awr Resistance

I want to restrict myself to dynamic flight, i.e., to aircraft
heavier than air. The development of lighter-than-air craft hap-
pened more or less independently, at least as far as the free
balloon is concerned. The principle of sustentation by hydro- or
aerostatic lift has been understood ever since Archimedes stated
his famous principle. The successful experiments of the Mont-
golfiers preceded any serious experiments aimed toward dynamic
flight, which means sustentation by forces produced in the air
by the motion of solids. Aerodynamics, in addition to aerostatics,
entered the problem of balloon flight when propulsion of the
balloon was proposed. Such proposals were made very soon after
the first successes of free balloons; Benjamin Franklin was one of
the first men who did some thinking in this direction, i.e.; in the
direction of dirigibles.

Let us return to the problem of heavier-than-air craft. As I
mentioned above, the concept of sustentation by flapping wings
or by a screw preceded that of the rigid airplane. '

The idea that sustentation can be accomplished by moving in-
clined surfaces in the flight direction, provided we have mechani-

6
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RESEARCH BEFORE FLIGHT

cal power to compensate for the air resistance that hinders this
motion, was probably clearly defined for the first time by an
Englishman, Sir George Cayley (1 773-1857)—not Arthur Cayley,
the mathematician—in his papers, published in 180g-1810, on
aerial navigation (Ref. 3). He belonged to a group of enthusiasts

i Py J--qar-] L Py ar\]- ré +]—\n nr‘r\l'-\lﬂ nr 'qlrr]—\ nmr\: ‘:\]]‘1 lﬂ.‘r l'\ ]r]! b aYes
wIig i€ G 561ve Uil PLULICLILL Ul LRI Cllipil u.,.a.uy Ly uu11u1115

models and studying bird flight. However, in his paper he clearly
defined and separated the problem of sustentation, or in modern
scientific language the problem of lift, from the problem of drag,
i.e., the component of total resistance that works against the
ﬂ1ght direction and has to be compensated by propulsion in order
to maintain level flight.

Cayley made certain statements that show his keen observa-
tion of the influence of streamlining on drag—for example, in
the case of spindle-shaped bodies. He said, according to a note
appearing in his Aeronautical and Miscellaneous Note-Book (Ref. 4),
“It has been found by experiment that the shape of the hinder
part of the spindle is of as much importance as that of the front
in diminishing resistance.” Cayley was rather skeptical that
theoretical science would make important contributions in the
field of flight research:

I fear, however, that the whole of this subject is of so dark a nature as
to be more usefully investigated by experiment than by reasoning [by
this he obviously meant theoretical reasoning] and in absence of any
conclusive evidence from either, the only way that presentsitselfis to copy
nature; accordingly I shall instance the spindles of the trout and
woodcock.

In the Note-Book, which was published after Cayley’s death,
we find the drawing reproduced in Fig. 4. Cayley obtained the
profile shown in the drawing by measuring the girths of various
cross sections of a trout and dividing the measured lengths by
three. It is interesting to learn that the shape of his profile almost
Xac tly coincides with certain modern low-drag airfoil sections,
as can be seen in the figure.

Thus the principle of the airplane as we know it now, that of

7
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AERODYNAMICS

the rigid airplane, was first announced by Cayley. But in order
to understand the further development of the airplane and to
appreciate the difficulties encountered by the pioneers of avia-
tion, we must look at the state of knowledge, in Cayley’s time, of
aerodynamics or more specifically of the forces exerted on solid

]nr\r];na mntr:n

. . .
DOQLCS uxuvu;g ug a uid like air. I“

CUgili a nula 11k ail I OIge
knowledge and opinions prevailing at that time, we have to go
back to the era in which the science of mechanics was founded.

4 N7
>
e
2 7
A j,— :' A!'
\

Fig. 4. Above: Sir George Cayley’s sketch of the cross section of a trout. (From
Aeronautical and Miscellaneous Note-Book (ca. 1799—1826) of Sir George Cayley [Cam-
bridge, 1933].} Below: A comparison of Cayley’s trout section with modern
low-drag airfoil sections. Circles indicate Trout; N.A.C.A. 63A016;
------ LB N-oo16.

Aristotle (384—322 B.c.) mentioned the problem of solid bodies
moving in air. But, since he believed there is always a force neces-
sary to sustain a uniform or even a decelerated motion, he looked
for a force which pushes forward a flying ball, instead of looking
for a force which resists the motion.

Galileo Galilei (1564—1642) recognized the law of inertia and
had a correct notion of air resistance. He observed that the move-
ment of a pendulum was slowly amortized by air resistance and
actually tried to determine the dependence of air resistance on

velocity.

8
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RESEARCH BEFORE FLIGHT

The first theory of air resistance deduced from the principles
of mechanics was, however, given in the Philosophiae Naturalis
Principia Mathematica of Sir Isaac Newton (1642-1727) (Ref. 5).
First, he clearly stated that the forces acting between a solid

=
-+
,..
]
™
~+
!"
ne)

117 Arioimalle qt

the fluid moves with the same velocity against the body.
in the thirty-third proposition of Section % of Book II he made
three general statements, valid for bodies of similar shape. These
three statements say that the forces acting on two geometrically
similar bodies which move in fluids with different densities are
proportional to—

a) the square of the velocity,
b) the square of the linear dimension of the body, and
¢) the density of the fluid.

These statements follow, according to Newton, from the funda-
mental laws of mechanics by the following argument: Consider
the body at rest, exposed to an originally uniform fluid stream
of given velocity. The force acting on the body may be caused
by centrifugal forces due to deflection of the-fluid or by impact
of the fluid particles. In both cases the rate of change of mo-
mentum (momentum = mass X velocity) produced in the fluid
is proportional to the density of the fluid and the square of the
velocities of the individual particles involved in the motion, there-
fore, supposing similarity of the flow, proportional to the square
of the undisturbed stream flow velocity.

Since, according to Newton’s general laws, the force acting on
a body or particle is equal to the change of its momentum, all
forces produced in the fluid and also the resultant force acting
berween the solid body and the fluid are proportional to the

' In Newton’s mechanics, this statement appears as a special case of his prin-
ciple of relativity. As to the interaction between a body and an airstream, it
was announced by Leonardo, who said, “ The resistance of an object against air

at rest is equal to the resistance of the air moving against the obiject at rest”
(Ref. 6).

9
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AERODYNAMICS

density of the fluid and the square of the velocity of the fluid
stream. The proportionality of the force with the square of the
linear dimensions of the body follows easily from consideration
of the geometrical similarity, since only pressure forces are con-
sidered. '

Tha pf\v‘YY\I1] o
8 1

A1 1Iulllildla

law of air resistance refers to the force acting on an inclined flat
plate exposed to a uniform airstream. It was much discussed in
connection with the problem of flight; in fact it cannot be found
in Newton’s works. It was deduced by other investigators based
on a method of calculation which Newton used for comparison
of the air resistance of bodies of different geometrical shapes. In
the thirty-fourth proposition of his book he calculated the total
force acting on the surface of spheres and cylindrical and conical
bodies by computing and adding the forces caused by the impact
of air particles, which supposedly move in a straight line until
they hit the surface. The same 1dea applied to the calculation of
the force acting on an inclined flat plate leads to the formula

F = pSU? sin’a

where p is the density of the fluid, § the area of the plate, U the
velocity of the plate, and :
a the angle of inclination.
The force F is directed
normal to the plate. The
quantity pSU sin « is evi-
dently the mass flow in
unit time through a cross

] ) Fig. 5. Diagram illustrating Newton’s theory.

section, S sin &, equal t0  The mass of fluid deflected by the plate is

the projection of the plate assumed to be that flowing through the cross

section § sina. U is the velocity of flight,

§ the area of the plate, a the angle of inclina-
tion, and F the force.

perpendicular to the orig-
inal flow direction (Fig.
A\ Te e crirmsmmonrd  tlias
5). 1t 18 supposed tnat .
after the impact the particles follow the direction of the plate.
Then one obtains the change of the momentumn of the fluid mass

10
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RESEARCH BEFORE FLIGHT

hitting the plate in unit time by multiplying this mass by the
velocity component, U sin a, created by the impact.

We note that only the dependence of the force on the angle of
inclination was computed according to a particular assumption
concerning the nature of fluid flow, whereas its dependence on

...... Aim an

ucuauy, Qlinenst uus, an

mechanical principles.

Experimental Techniques in Early Aerodynamics

In the two centuries between the publication of Newton’s Prin-
cipia and the date of the first mechanical flight, a great number
of observations were made to determine the resistance experi-
enced by a body. Newton’s argument had one great merit. He
talked in general about fluids and pointed out that the same law
applies to water as well as to air. The forces are proportional
to the respective densities. This statement made it possible to
apply the result of measurements made in water to motion in the
air, and vice versa. This, of course, represented great progress.

In the long list of experimenters, engineers, and physicists, we
find the names of many generally known scientists. Edme Mariotte
(1620-1684) measured the force aicting on a flat plate submerged
in a stream of water. Jean Charles de Borda’s (1733-1799) ex-
periments included bodies of various shapes; he put the bodies
in motion in the water by means of a rotating arm, the so-called
whirling arm. This method had been used before by Benjamin
Robins (1707-1751), who carried out his experiment in air (Fig.
6). The whirling-arm technique has been used up to modern
times. It has the disadvantage, however, that after some time the
air or water bégins to rotate with the arm, and it is difficult to
determine exactly the speed of the model relative to the air or
water that surrounds it.

Several experimental methods were used for pulling the body
Who C -b[dIlLC lb to UC UC[CF rl (] lj a I'CL[II near uotiOi‘l.
Jean Le Rond d’Alembert (1719-1%83), Antoine Condorcet
(1743~1794), and Charles Bossut (1730—-1814) towed ship models

11
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AERODYNAMICS

in still water. This was perhaps the first use of the so-called
towing-tank technique. In order to carry models through the air
in rectilinear motion, locomotives and, later, motor cars have
been used. This method, however, is not very exact. First, it can

Fig. 6. Whirling arm of Benjamin Robins. (From Handbuch der Experimentalphysik
[Leipzig, 1931], IV, Teil 2, by permission of Akademische Verlagsgesellschaft.)

Another method of creating a rectilinear motion is to allow a
body to fall through the air. Newton himself observed spheres
dropped from the dome of St. Paul’s Cathedral. Many investi-
gators have used this method. Remarkable experiments were
carried out at the end of the nineteenth century and the begin-
ning of the twentieth century by Alexandre Gustave Eiffel (1832-
1923) and his collaborators, who used the tower named after
Eiffel in Paris (Ref. 7). Fig. 7 shows Eiffel’s experimental ar-
rangement {or measuring the resistance of a flat plate. The re-
cording instrument, R, contained a cylinder that was turned at a
rate proportional to the velocity of the falling system relative to
the guiding cable. On this cylinder two records were registered.
A tuning fork recorded the time. A spring dynamometer in-

12
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RESEARCH BEFORE FLIGHT

serted between the plate and the supporting frame registered the
force acting between these two parts. Now, since the time was
given as a function of the displacement, one could calculate the
actual acceleration. The difference between the actual accelera-
tion and the acceleration due to gravity is equal to the difference

latiaroon tha Arere meacnired and .f']-\n forere diie tn 2ir recictanca
DEWCCIL LU JUILL lliCasultu aliu UIC Uity Qulc W dil 1lolstalie
divided by the mass rigidly connected with the plate.
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Fig. 7. Eiffel’s arrangement for measuring the resistance of a flat plate. (From
G. Eiffel, Recherches expérimentales sur la résistance de I'air exéeutées a la tour Eiffel
(Paris, 1910].)

The best method for measuring air resistance is to put a model
in an artificial stream of air, i.e., the method of the wind tunnel

13
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AERODYNAMICS

(Fig. 8). The first man to make such an installation was Francis
Herbert Wenham (1824-1908), founder member of the Aero-
nautical Society of Great Britain, who designed a wind tunnel in
1871 for that Society. In 1884 another Englishman, Horatio
Phillips (1845-1912) built an improved wind tunnel. Following

| I
p—— JW\Y_ N e % .]
<IO=1 yr %
Motorraum — Jﬁ
" {FILILE T U b% /
. —r
= ‘L—' =
‘_J |-t E%
N | §)
\ N (|~
b7 447 e
\ N
058 |\ N y— ﬁ‘\\\—j&\] _!
[ &« I Iy
Y 8§22 ? J\QW

Fig. 8, Old wind tunnel of the University of Aachen; constructed in 1912-1913.
The dimensions are given in meters.

these, several other small wind tunnels were built; for example,
in 1891 Nikolai E. Joukowski (1847-1921) at the University of
Moscow built a tunnel two feet in diameter. In the first decade
of our century, wind tunnels were built in almost all countries.
Some of the builders were Stanton and Maxim in England,
Rateau and Eiffel in France, Prandtl in Germany, Crocco in
Italy, and Joukowski and Riabouchinski in Russia. In compari-
son to the present huge tunnels, these installations were relatively
modest. For example, no wind tunnel built before 1g10 had more
than 100 horsepower. Today a wind tunnel in the French Alps
uses hydraulic power to the amount of 120,000 horsepower, and
I think the largest wind tunnel that is planned in this country
will use about a quarter of a million horsepower for driving the
airstream. One of our most powerful tunnels is shown in Fig. g.

T4
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RESEARCH BEFORE FLIGHT

Scientific research, at least as far as means of research are con-
cerned, has followed in general the same scale of development as
aircraft construction.

Experimental
ments were correct: the proportionality to the density, the pro-
portionality to the square of the linear dimension, and the pro-
portionality to the square of the velocity. Of course the last of
these is restricted to small or moderate speeds, because, as was
known from ballistic experiments even in Newton’s time, it does
not apply to velocities comparable or superior to the velocity of
sound. It applies only so long as the air can be considered as
incompressible or of very small compressibility. We shall discuss
this question in Chapter IV.

Newton’s prediction of proportionality between the force act-
ing on a surface element and the square of the sine of its angle
of inclination turned out to be completely fals¢. Experiments
show that the force is;'rather, nearly linear with the sine of the
angle—or with the angle itself in the case of small angles. The
question of whether the experimental or Newton’s theoretical
law 1s correct has far-reaching consequences in the theory of
flight. In fact, if the normal force follows Newton’s law, the
component forces perpendicular and parallel to flight velocity,
i.e., the lift and the drag, are proportional to sin’a cos a and
sine, respectively. Thus the lift coefficient, be\i"ﬁ'g"proportional
tQ the second power of sin «, is very small for small values of
the angle a, and if the airplane designer does not want to use
large values-of a, he needs a tremendous wing area in order to
obtain a sufficient amount of lift. On the other hand, the ratio
between lift and drag is equal to cot @, and this expression
can have a large value only if the angle a is very small. If New-
ton’s law is correct, the poor designer has only the choice of

either making a tremendous contraption having a very large

15
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RESEARCH BEFORE FLIGHT

wing area, and therefore a heavy structural weight, or building
a machine with a reasonable wing area but low lift-drag ratio,
which means a heavy engine for propulsion.

A number of authors expressed the opinion that Newton’s law
contributed to the pessimistic forecasts one could find in the

CL.
o

sonally I do not believe that Newton’s 1nﬂuence was really so
catastrophic. I think most of the people who, in the early period
we are talking of, were really interested in flying, did not believe
in any theory. But it must be considered that the theory was at
variance with the facts. Further it should be noted, as I stated
before, that Newton essentially considered blunt or pointed
bodies exposed to a parallel stream in order to compare their
respective resistances and did not study forces acting on inclined
surfaces. We will see later why his theory applied to wing surfaces
gave results so different from reality, and on the other hand how
his law found new application in the domain of very high super-
sonic speeds.

Bird Flight: Semiempirical Flight Theories

Throughout the nineteenth century, we observe two practi-
cally unrelated developments. On one side, the flight enthusiasts,
mostly practical men, developed their own rather primitive theo-
ries of bird flight and tried to apply their results to the require-
ments of human flight. On the other hand, a mathematical
theory of fluid dynamics was developed by scientific people;
this development was not related to the problem of flight and
did not give much useful advice to those who wanted to fly.

The investigations directed toward the realization of human
desire to fly dealt especially with two problems: first, to deter-
mine the power required for flight; second, to find out the most
efficient shapes for wmgs Let us consider briefly both problems

r'l +l-\ r\w 113 1nrg 1 tha MU |
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Concermng the question of the power required for flight, the
fact that birds actually fly through the air furnished a certain
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solid support for the speculations. It was recognized at an early
date that two characteristic quantities must play an important
role in the calculations. One is the ratio between the weight,
W, and the wing area, §. We call this ratio, W/S§, the wing
loading. The second quantity is the ratio between the weight,
ble, P. The ratio, W/P, is called the
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power loading. In the case of bird flight, the power available is
the muscle power that the bird can exert in flight. One may
assume that the latter quantity is roughly proportional to the
weight of the bird.

Then the main question was to estimate the power required
and compare it with the power available. AThe power required
was calculated on the assumption that the SOarmg bird without
working its wings would lose a certain altitude in unit time;
this is called the sinking velocity. In order to fly horizontally,
the bird has to put in at least as much work as is necessary to
raise its body at a rate sufficient to counteract the sinking velocity.
This estimate led to the conclusion that the power required per
unit weight (i.e., the reciprocal of the power loading) is propor-
tional to the square root of the wing loading.

The general form of this rule was confirmed by a more de-
tailed analysis by Charles Renard (1847-1905) (Ref. 8), one of
the leaders in early French aeronautics. He expressed the power
required for level flight as the sum of the power necessary for
sustentation and the power needed for propulsion, i.e., the drag
of the aircraft multiplied by the speed. His formula is quite
similar in form to those used in modern aircraft design. Then he
computed the velocity at which the power required has a mini-
mum value and substituted this value in his formula. The re-

sult 1s
P ) W
= constant X l _S ’
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ecessary for level flight (p denotes the densiry

D

minimum pow
of the air).
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The constant in Renard’s formula depends on the assumptions
made (a) for the law of sustentation, and (4) for the drag co-
efficient of the aircraft. The first assumption is the important one.

If Newton’s resistance law is used for the computation of the
force of sustentation, as we indicated above, a terrific figure is
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1s more reasonable 1f the lift is computed by one of the empirical
formulas found by experiment. According to Henry, a con-
temporary of Renard (Ref. g), the constant in the equation

"CJ

would be equal to 0.18.?
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Fig, 10. Wing loading of birds. The wing loading in pounds per square foot is
plotted against the weight in pounds, both in logarithmic scale. White circles
denote the birds which regularly soar, black circles those which flap their wings.
The straight line of slope 1:3 corresponds to the similarity law of Helmholtz.

If we apply the Renard formula to the flight of birds, it is evi-
dent that the power required per unit weight of the bird increases
with the wing loading. It is interesting to see how the wing load-
ing of birds actually varies with their total weight. Fig. 10 con-
tains information which I have prepared from data given in

*Henry gave the formu]a in the form P/W = constant X v/ W/S. In this

case the constant is not nondimensional and has the numerical value § if P,
W, and S are expressed in kilograms, meters, and seconds.
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La Machine ammale, the famous book written by the French
physiologist Etienne Jules Marey (1830-1g904) (Ref. 10). The
abscissa 1s the weight in pounds and the ordinate is the wing
loading in pounds per square foot, both plotted against loga-
rithmic scales. Distinction is made between birds which regu-
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general, the wing loading increases as the weight increases. Since
we are inclined to believe that the power which a bird can exert
by its pectoral muscles is approximately proportional to its
weight, it follows that flying becomes more of a problem for a
large bird than for a small one. We therefore conclude that
there is a certain size beyond which a living being is unable to fly.

The famous German physicist Hermann von Helmholtz (1821-
1894) considered the similarity law of flying animals in a paper
published in 1873 (Ref. 11)] He suggested that the weight of the
animal 1s proportional to the cube and its wing area to the square
of its linear dimension. According to this assumption, the wing
loading increases proportionally to the cubic root of the weight.
This relation 1s represented by a straight line of slope of 1:3 in
Fig. 10, where the logarithmic scale is used. Thus the specific
law proposed by Helmholtz seems jto be substantiated if we con-
sider only the soaring birds.

In German academic circles an anecdote made the rounds
saying that a student failed in an examination held by Helm-
holtz because he was not able to prove that human flight would
never be possible. I doubt that the story is true in this form.
Probably the student had been asked about the possibility of
flight by man based on human muscular power. Helmholtz came
to the conclusion, by considering the influence of increasing
weight on flying ability in the animal kingdom, that man has a
very poor chance of flight by his own muscle power.

3 Identification of the birds mentioned in Marev’s work and classification of
them as soaring and flapping birds were made by Professor Arthur A. Allen,
Laboratory of Ornithology, Cornell University, to whom the author extends
his most sincere thanks.
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Up to now no attempt to operate an airplane by human
muscle power has been successful. In 1934 the Italians Bossi and
Bonomi succeeded in maintaining level flight of a propeller-
driven airplane over a distance of about 2,600 feet, while the
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believe that, by improving the aerodynamics of wings and propul-
sion and by reducing the structural weight, an aircraft could be
designed to operate by muscle power.

In addition to the careful study of bird flight, early researchers
in aerodynamics were especially concerned with finding the most
favorable wing shapes. Such
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. o rescarch was done either in
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wind tunnels or by means of
actual flying in gliders. Fig. 11
shows a series of wing profiles
investigated in Phillips’ wind

£ tunnel (Ref. 12). We notice
Y, & that Phillips investigated
At ' .
Ak -—7..\ curved surfaces, which were
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found more advantageous than
flat plates. This observation
LPalented 13
wanted 2L SR was fully confirmed by the
P - G _ - gliding experiments of Otto

Fig. 11. Wing sections studied by Ho-
ratio Phillips. (From American Engineer
and Railroad Journal, 67 (1893), 135.)

Lilienthal (1848-1896) (Ref.
13). Two findings appeared
important to the investigators

of this period: first, that a
curved surface shows positive lift in the case of zero angle of at-
tack, i.e., when leading and trailing edges are located at the same
height; second, that the lift-drag ratio of curved surfaces in cer-
tain cases is superior to that of flat plates. At that time no theo-
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produced lift at zero-angle attitude. We will see later how the
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modern theory of lift successfully explains this. It is remarkable,
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however, to find at:a relatively late date (1g910) the following
comment in the well-known book of Richard Ferris, How It
Flies: “Later investigations”’—he 1s discussing Henson’s airplane
design of 1843—“have proven that the upper surface of the aero-
plane must be convex to gain the lifting effect. This is one of the
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| LWL § L

paradoxes of flving planes which no one has

Lilienthal strongly emphasized the importance of curved wing
surfaces. He made many other interesting acrodynamic observa-
tions; he found, for example, that natural wind i1s more favorable
for soaring flight than a perfectly uniform airflow. This favorable
effect can be achieved by utilizing the upward components
which often exist in the natural wind. Lilienthal found, however,
that sometimes the lift in natural wind, even in the absence of
upward components, may be superior to that measured in a
uniform airstream. Only in recent times was it recognized that
this effect 1s due to a cross-velocity gradient, which generally
prevails in the natural wind, at least in lower layers of the at-
mosphere.

Some theoretical ideas of the Lilienthal brothers, Otto and
Gustav (1849-1933), were rather nebulous. They devoted much
thought to the possibility of creating negative drag, i.e., propul-
sion, by a particular shape of the wing profile without providing
power. Several years after the death of his brother Otto, who
died in an accident in 18g6, Gustav Lilienthal actually published

“theory” for this effect, which is evidently in contradiction to
the principles of mechanics. In my youthful zeal for scientific
truth, 1 quoted him once as the “small brother of a great man,”
an expression which I believe hurt him. I regret it now as I look
back to this adolescent period of aerodynamic science.

In this country, Octave Chanute (1832-1910), a distinguished
civil engineer of Chicago, carried out a great number of gliding
experiments. His attention was centered on the problem of
month before Otto
Lilienthal’s fatal accident, he expressed the opinion that Lilien-
thal’s glider was unsafe (Ref. 14).
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In addition to man-carrying gliders, flying models with or
without propulsion contributed essential aerodynamic data. The
model presented by Alphonse Pénaud (1850-1880) seems to
have been the first model successfully stabilized by a horizontal
tail surface at the rear (Fig. 12). It had a propeller driven by
with a total weight of 2,600 pounds and an engine of 20 to 30
horsepower could be designed in accordance with his patents.
His life and work are a tragic chapter in the history of aero-
nautics, He became paralyzed so that he could only continue
his studies in his home; poverty, ill health, and lack of recogni-
tion discouraged him to such an extent that he killed himself at
the age of thirty.

Fig. 12. Alphonse Pé-
naud’s model airplane.
(From American’ Engineer
and Railroad Journal, 66

(1892), 508.)

The Wright brothers, who performed the first mechanical
flight of a piloted airplane, and Samuel P, Langley (1834-1906),
who came near to such a practical result, followed along the
lines we have indicated in this short sketch. Langley strongly
stressed the analogy with bird flight and was fully aware that
Newton’s theory of air resistance could not be correct if human
flight with heavier-than-air craft was possible. After flying a
power-driven model, he reached the decision to build a man-
carrying machine. He was fortunate In possessing as an assistant
a mechanical genius who has seldom received the credit due him,
This assistant was Charles M. Manly (1896-192%7), a Cornell
University graduate, who built a gasoline engine of sufficient
power and lightness to serve the purpose.
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Wilbur (186%-1912) and Orville (1871-1948) Wright were

not professional scientists., They were, however, familiar with the
practical aerodynamical ideas developed before them by various
researchers, and in addition to a remarkable talent for construc-
tion, they had the ability to utilize model experiments for their
esign. As a matter of fact, they operated a simple and
small-scale wind tunnel for this purpose. Furthermore, they
carried out nearly one thousand gliding flights.

* It is not without interest to consider the characteristic data of
the first airplane of the Wright brothers in the light of the theo-
retical speculations sketched above. The gross weight of their
airplane was equal to 750 pounds and the wing had a total area
of 500 square feet, so that the wing loading was 1.5 pounds per
square foot. This wing loading is a little larger than that of a
vulture (Fig. 10), and seventeen times less than that of a fully
loaded Douglas DC-g airplane, for example. The net power
available from their 12-horsepower engine with the 66-percent
propeller efficiency stated by Orville Wright can be estimated to
be 4,300 foot-pounds per second. Hence the power available per
unit weight was equal to 5.7 feet per second. According to
Renard’s formula, the value of the power required per unit
weight would be 4.4 feet per second for the above-stated wing
loading. It is also interesting to note that Renard, in a paper
published in January 1g9og (Ref. 15), computed that the engine
of a piloted airplane should not be heavier than 1% pounds per
horsepower. The engine used by the Wright brothers was 15
pounds per horsepower.

In the year preceding the Wright brothers’ first successful
flights, the German applied mathematician Sebastian Finster-
walder (1862-1951), published an excellent review of the state of
aerodynamic knowledge at that time (Ref. 16). This article con-
tains much interesting material and a great number of references
concerning the subject, which I have only been able to touch
upon here in a sketchy way.
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Mathematical Fluid Mechanics

Now very briefly let us take a look at the other direction of
development, theoretical science. After Newton’s theory was pub-
lished, mathematicians recognized the shortcomings of his method.
They realized that the problem is not so simple as Newton
thought. We cannot replace the flow by parallel motion, as New-
ton tried to do in an approximate fashion (Fig. 5). The first man
to develop what we may call a rational theory of air resistance
was D’Alembert, a great mathematician and one of the Encyclo-
pedists of France. He published his findings in a book called
Essai d’une nouvelle théorie de la résistance des fluides (Ref. 147). In
spite of his important contributions to the mathematical theory
of fluids, he got a negative result. He ends with the following
conclusion.

I do not see then, I admit, how one can explain the resistance of
fluids by the theory in a satisfactory manner. It seems to me on the
contrary that this theory, dealt with and studied with profound atten-
tion, gives, at least In most cases, resistance absolutely zero; a singular
paradox which I leave to geometricians to explain.

This statement is what we call the paradox of D’Alembert. It
means that purely mathematical theory leads to the conclusion
that if we move a body through the air and neglect friction, thé
body does not encounter resistance. Evidently this was a result
which could not be of much help to practical designers.

In the next century, Helmholtz, Gustav Kirchhoff (1824-1887),
and John William Strutt, Baron Rayleigh (1842-1919g), devel-
oped a theory which they thought would enable us to escape the
conclusion of D’Alembert (RCfS.'IB, 19, 20). This theory de-
scribes the motion of an inclined plate in a particular way,
assuming that a surface of discontinuity is formed at each edge of
the plate, so that the plate is followed by a wake consisting of
““dead air” and extending to infinity behind the plate (Fig. 13).

This assumption permits the calculation of a force acting on the
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Fig. 13. Flow with discontinuity DEAD AIR

surfaces as assumed in the theories

of Kirchhoff and Rayleigh.

plate different from zero even in the case of a nonviscous fluid.
In Fig. 14, curve 1 represents the force acting on a flat plate
as a function of the angle of inclination according to Newton’s
theory, whereas curve 2 represents the result according to Ray-
leigh. However, if one compares Rayleigh’s result with present-
day theory, which is in accordance with measurements and is
represented by curve 3, it is seen that Rayleigh’s theory was still
unsatisfactory. ’

Fig, rg. Normal force on a flat 1LOF
plate versus angle of attack «,
Normal force per unit width FORCE
of the plate is divided by pl2L FDT’ |
to obtain a nondimensional
coefhicient. p is the density of
fluid, U/ is the velocity of rela- O5+
tivestream, and Lis the length
of the plate. Curves 1, 2, and g
represent Newton’s theory,
Rayleigh's theory, and the
present-day (circulation) the-
ory of lift, respectively. O : L '

o) 30° 60° 90°

To summarize what has been said about the state of affairs
around 1goo, when mechanical flight was first realized: At that
time there was a science, which can be called semiempirical
aerodynamics, only loosely connected with the rational theory of
the mechanics of fluids. At the same time there was a mathe-
matical theory of the mechanics of ideal, i.e., nonviscous, fluids.
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The first result of this theory was the paradox of D’Alembert,
stating that the resistance of a body moving uniformly in a non-
viscous fluid is zero if the fluid closes behind the body. If a
“separation” of the flow from the body is assumed, as for ex-

ample by Rayleigh the theory leads to a value of the force
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chapters will show how these two developments were brought
together and led to rational theories of lift and drag, 1.e., to the
theory we now teach in the colleges and use in design. The
meeting of the two diverging developments gave the real start to
modern aerodynamics. Since then mathematicians, physicists,
and designers have learned to work together. I do not say that
the theoretician gives all the answers that the designer wants, or
that the designer always applies the theories correctly; but at
least they recognize each other’s merits and shortcomings.
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CHAPTER 11

AS I pointed out in Chapter I, a gap separated the theoretical
calculations and the actual observations concerning the magni-
tude of the lifting capacity of an inclined surface. I also pointed
out that, at the time of the first human flight, no theory existed
that would explain the sustentation obtained by means of a
curved surface at zero angle of inclination of the chord. It seemed
that the mathematical theory of fluid motion was unable to ex-
plain the fundamental facts revealed by experimental aero-
dynamics.

There were, however, theoretical results and empirical ob-
servations, made independently of the problem of airplane flight,
which eventually led to a rational understanding of the phe-
nomena of aerodynamic lift.

Circulation and Magnus Effect

In 1878 Lord Rayleigh, who has been mentioned before,
studied the flow around a circular cylinder (Ref. 1). He found
that, if the cylinder 1s exposed to a parallel uniform ‘flow or
moves uniformly through a fluid at rest, D’Alembert’s theorem
applies, and there is no force acting on the cylinder. But the
superposition of a circulatory flow upon a parallel uniform flow
produces a force perpendicular to the direction of the original
flow, or perpendicular to the direction of the motion of the
cylinder. This result was used to explain the so-called Magnus
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effect, which had been well known to artillerists since the begin-
ning of the nineteenth century. The phenomenon had also been
recognized by tennis players and golf “duffers.” As a matter of
fact, Rayleigh’s study was undertaken to elucidate the swerving

We start with the theorem of Daniel Bernoulli (1700-1782),
which states that in the flow of an incompressible fluid—if for
the moment we disregard gravity and frictional effects—the sum
of the pressure head and velocity head is constant along a stream-
line. The pressure head of the stream is the height of a fluid
column which, at rest, would produce, by virtue of its weight,
the pressure measured in the stream. The velocity head is the
height of a fluid column which would produce the same stream
velocity through a hole located at the bottom of the column.
For example, if an incompressible fluid passes through a hori-
zontal pipe of variable cross section, then because the same fluid
mass must go through all the cross sections, the velocity will be
smaller in the larger cross section and greater in the smaller cross
section. Now it follows from Bernoulli’s theorem that where the
velocity is higher, the pressure is lower, and vice versa. Bernoulli’s
theorem can be considered as an expression of the law of the
conservation of energy. One can interpret it as a mutual ex-
change between potential energy and kinetic energy.

Consider now a flow directed from left to right around a
cvlinder. As shown in Fig. 15, the streamline pattern is com-
pletely symmetrical, so that no net force can arise (D’Alembert’s
paradox). Let us superimpose on this flow a clockwise circulatory
motion around the cylinder (Fig. 16). Then, at point A we add
the velocity of the circulatory motion to the velocity of the flow
and get an increased velocity, whereas at B the circulatory
velocity is directed against the flow and reduces the velocity.
According to Bernoulli’s theorem, without the circulatory mo-
tion the pressure would have the same value at A and‘B, but
with the circulatory motion the pressure at B is higher than at
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A, and this pressure difference gives the upward force. If the
circulatory motion had a counterclockwise sense, it is evident
that the force would be in the opposite direction.

|
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B

Fig. 15. Ideal flow past a circular cylinder.

Now what happens to the tennis ball can be explained in the
following way: The spin given to the ball creates, by friction, a

)e

\
/

Fig. 16. ldeal flow past a circular cylinder with clock-
wise circulatory motion superimposed.

circulatory motion of the air in the same direction in which the
ball rotates. This circulatory motion, superimposed upon the air-
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flow relative to the ball, produces a force perpendicular to the
instantancous velocity of the ball, i.e., perpendicular to the tra-
jectory of the ball. If the lift is positive, the effect is equivalent
to an apparent decrease of gravity; if the lift is negative, it seems
to add to the gravity. In the first case the range of the ball is
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uses the same effect of spin, directing the ball in a way favorable
to his team.

The reader niay remember that a German engineer, Anton
Flettner (Ref. 2), used the Magnus effect to drive a boat by
wind power. If a circular cylinder is erected vertically on a boat
and made to rotate around its axis, the wind produces a force in
a direction essentially perpendicular to the cylinder axis and the
dircction of the relative wind. Thus a rotating cylinder can re-
place a sail. Actually, a sail is nothing but an airfoil. Flettner
also showed that by rotating two tandem cylinders in opposite
directions he could turn a boat around. I once made a trip out
of Bremerhaven, in 1924 I believe, in Flettner’s experimental
boat. The action of the cylinders as sails was interesting and suc-
cessful. The ultimate failure of the invention, however, was due
to economic reasons. The practical application was intended for
cheap freighters or fishing boats. But unfortunately the cylinders
had to be driven rather fast in order to obtain significant propul-
sive forces, and this made necessary the use of ball or roller
bearings and the employment of a skilled mechanic for mainte-
nance. The resulting expenses were too high for fishing boats,
and the supposed profit in comparison with conventional ship
propulsion became illusory. Flettner’s experiment was carried
out, of course, in a period in which the theory of lift was already
well established.

Circulation and Laft:

Lanchester, Kutta, and Joukowsk:

The connection between the lift of airplane wings and the
circulatory motion of the air around them was recognized and
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THE THEORY OF LIFT

developed by three persons of very different mentality and train-
ing. First I should mention the Englishman Frederick W. Lan-
chester (1878-1946). He was a practical engineer, more or less
an amateur mathematician, and by trade an automobile builder.
After working as an engineer in the development of gas engines
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and producing a new engine s
of the first Lanchester motorcar in 18g4. The Lanchester Motor
Company, of which he was chief engineer and general manager,
was formed in 18gg. At the same time he developed the circula-
tion theory of flight, having begun with a paper on that subject
in 18g4. Two books by him, containing his well-developed ideas,
appeared in 1907 and 1go8 (Ref. 3). I remember that I visited
him in the summer of 1g12—on the occasion of the Fifth Inter-
national Congress of Mathematicians—in England. We met in
Cambridge and he showed me about, driving his own car along
the narrow English roads at a speed that was rather frightening.
This was in the early days of automobiles, and I felt a little
uneasy discussing aerodynamics at such speed, but it did not seem
to affect Lanchester. He was multisided and full of imagination.
For example, during the First World War, he published his ideas
on the theory of warfare. A few years ago I found that the first
American book on the military science called Operational Analy-
sis starts with a theory of Lanchester’s. He was a man who con-
tributed many things to many branches of applied mathematics
and who continued to produce technical inventions all his life.

The second person is the German mathematician M. Wilhelm
Kutta (1867-1944), who started out as a pure mathematician
but became interested in Otto Lilienthal’s gliding experiments
and therefore in aerodynamic theory. His particular aim was to
understand the effect of curvature—why a horizontally placed
curved surface produces a positive lift. He published a paper on
this subject in 1go2 (Ref. 4).

Finally, the third person I should name is Nikolai E. Joukowski,
who has been mentioned earlier. He had extensive training in
mathematics and physics, obtained originally in Russia and later
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in Paris. In 1872 he became professor of mechanics at the Poly-
technical Institute and in 1886 at the University of Moscow.
He had a broad interest in the entire field of theoretical and
applied mechanics. In the period 19o2-19og, independently of
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for wings of infinite span and constant cross section (Ref. 5).
As has been mentioned in Chapter I, he was also instrumental
in developing the means for aecrodynamic research in his country.

Each of these three men recognized the connection between
aerodynamic lift and circulatory motion. In order to get a clear
concept of the theory of lift, however, we must review some of
the fundamental notions of fluid mechanics.

Some Fundamental Notions of Fluid Mechanics:
Foukowsks’s Theorem

If we want to describe the history of a fluid element in a flow,
we can show that in the most general case it consists of a transla-
tion, a rotation, and a distortion (Fig. 17). In the theory of

Fig. r7. Translation, rota-
tion, and distortion of a
fluid element.

~ 4

~J~ DISTORTION ™ g

. ’
1IN
7 ~ 7, .
’ hY 4 ~
’ ~ 4 ~

r] Y | r]: + ~
L i, a

potential flow or a vortex-free flow; whereas, if the element also
rotates, we call the flow a rotational flow or a vortex flow. The term
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potential flow originates from the mathematical concept of the
velocity potential.

Let us consider a few simple examples of vortex-free and
vortex flows. First let us take a parallel flow with uniform velocity.
This is evidently the simplest example of a vortex-free flow, be-
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All the elements just travel parallel, like automobiles in traffic

)

on a straight road. Second, we consider a two-dimensional
parallel skear flow, i.e., a flow in which the velocities of all particles
are parallel but their distribution through a section perpendicular
to the flow direction is nonuniform. This is an example of flow
with rotation, or vortex flow. We can explain the concept of
rotation in the following way: We place two arrows at a point
A in a flow which has a linear velocity distribution (Fig. 18),
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Fig. 18. Parallel shear flow.

one in the stream direction and thc other perpendicular to this
direction; we observe what happens to the two arrows if they
move with the fluid from A to B. The first arrow is translated
parallel to its direction, but the second arrow turns with the
stream. In this case we have both distortion and rotation of the
element. The magnitude of the rotation of the fluid element is
given by the average rotation of the two arrows, i.e., the rota-
tion of their bisectrix. We see that the element rotates, because
the angle of inclination of the bisectrix relative to the flow direc-
tion, which originally was equal to 45° decreases as we proceed
downstream. This is the simplest example of a vortex flow. It
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must
sarily imply rotation of the whole fluid. Our example is a parallel
flow where every element rotates, and, scientifically, it is the
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rotation of the elements that characterizes a vortex flow. The
lavman believes that if we talk of vortex flow we must mean
that something is whirling around at great speed.

Now let us consider a so-called circulatory flow, in particular
a flow in which the fluid elements move around in circular

miline
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we imagine
(for example, like a solid wheel), it is clear that we have a vortex
flow, because-—applying the rule of the two arrows to this case—
cvery element turns around with a certain angular velocity
(Fig. 19). There is no distortion. This is the simplest example of
a vortex flow with circular streamlines; the angular velocity of
the elements is a constant. We call this flow a vortex flow with
constant rotation, or constant vorticily. Unfortunately, the angular
velocity is not the same as vorticity. The two quantities differ
by a factor of two because the mathematicians defined the vor-
ticity as twice the angular velocity to give a more esthetic ap-
pearance to certain formulas in vector analysis.

Fig. 19. Circulatory flow with constant vorticity.

Now the question arises whether or not there is a velocity
distribution where the streamlines are circles but the flow is
vortex-free and the fluid elements do not rotate. The existence
of such a flow can be demonstrated, as was the vortex flow, by
the use of two arrows. The problem is to find a velocity distribu-

tion along a radius such that the bisectrix between the two
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arrows keeps its original direction. In this case the velocity of the
fluid particles necessarily decreases with increasing distance from
the center of the circulatory motion. A simple calculation—or an
experiment carried out according to the construction indicated in
Fig. 20—will readily show that the velocity must be inversely pro-

er, 0. Or we can say that

the product # X r is a constant. In fluid mechanics we prefer to
write the formula in the form «# X 2wr. The expression 277 is
equal to the circumference of the circular streamline, and the
product of the velocity and the circumference is called the circu-
lation. So the dimension of circulation is feet per second multi-
plied by feet.

If the flow is a potential motion, i.e., a vortex-free motion, the
circulation is a constant for the whole field of flow. It is evident
that such a motion cannot be physically true up to the center,
because the velocity at that point would be infinite. So there
must be a core or nucleus where the flow is not potential flow.
There are two physical possibilities. One possibility is that in the
nucleus we have fluid that rotates. We usually assume that the
nucleus rotates approximately like a solid body—i.e., that the vor-
ticity has'a constant value within the nucleus (Fig. 20). Such a
combination we call a wvortex or an eddy. It consists of a fluid

Fig. 20. Circulatory flow with nucleus inside and vortex-
free flow outside. The center is at O; u denotes the fluid
velocity {tangential} and r the radius.
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nucleus rotating like a solid body and a circulatory flow with
outward decreasing velocity. However, instead of a fluid nucleus
we can also have a solid body, as core. Then outside the solid
body we may have a circulatory flow without vorticity. This is

the case that we are considering, for example, when we talk of
‘:rnnt. Wa ac 1 3
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around a ball or a cylinder. Then we give the body a translatory
motion, and the combined flow produces lift. Joukowski has
shown that when a cylindrical body of arbitrary cross section
moves with the velocity U in a fluid whose density is p and there
is a circulation of the magnitude I' around it, a force is pro-
duced equal to the product pUT per unit length of the cylinder.
The direction of the force is normal both to the velocity U and
the axis of the cylinder.

So we have an explanation of the lift phenomenon if we can
show that there is really circulation around the body. For the
reader who likes to think in mathematical or geometrical terms,
I will note that one can generalize the definition of circulation
by taking the mean value of the component of the velocity along
an arbitrary closed curve encircling a body and multiplying it
by the length of arc of that curve. If the flow is vortex-free, this
product has the same value independent of the choice of the
curve. Thus we have a general definition of circulation, general-
ized from a circulatory flow with circular streamlines. If we take
a closed curve that docs not go around the body but encloses
fluid only, then the circulation around the curve will be zero.
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Two-Dimensional Wing Theory (Wing of Infinite Span)

For the lift problem, as far as an infinite wing of constant
section is concerned, we assume that the flow around the wing
is vortex-free. Then the computation of the lift 1s reduced to the
determination of the magnitude of the circulation as a function
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ig section.

wrel

of the velocity and as a function of the shape of the wis
This problem was solved in principle by Kutta and by Joukow-
ski. The best way to arrive at an understanding of their solution
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is to consider the flow pattern around a wing section put into
motion in a fluid originally at rest.

First I must mention a fundamental theorem on vortex mo-
tion announced bv Helmholtz (Ref. 6). This great German physi-

cist showed that if there is no initial vorticity in a fluid, e.g., if
he fluid

+
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friction or by the presence of sharp edges on a body. In the
latter case, a discontinuity may be formed between two fluid
streams meeting at the edge. Fig. 13 (p. 26) shows, for example,
a discontinuity between a fluid in motion and a fluid at rest.
Such a discontinuity can be considered as a continuous sequence
of vortices, or a vortex sheet.

We now want to observe what happens when a wing section
with a sharp trailing edge is put in motion. (We call the front
part of the wing, exposed to the stream, the leading edge and the
part in the rear, where the fluid stream leaves the wing surface,
the trailing edge.) The leading edge is usually rounded, at least
for wings used at subsonic speeds, whereas the trailing edge is
made as sharp as possible. Figs. 21 and 22 show flow photographs
in which the streamlines are made visible by the introduction of

Fig, 21. Picture of the streamline flow around an airfoil started

from rest. The camera is moving with the airfoil. (From L. Prandt

and O. G. Tietjens, Applied Hydro- and Aeromechanics [copyright

1934, United Engineering Trustees, Inc., McGraw-Hill Book Co.,
Inc.], by permission,)
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Fig. 22, Pictures of the streamline flow at a little later stage than

Fig. 21. Upper: Camera at rest relative to undisturbed fluid.

Lower: Camera moving with the airfoil. (From L. Prandt! and

O. G. Tietjens, Applied Hydro- and Aeromechanics [copyright 1934,

United Engineering Trustees, Inc., McGraw-Hill Book Co., Inc.],
by permission.)

fine aluminum powder, which supposedly follows the streamlines
of the fluid. We see that at the first moment, as shown in Fig. 21,
the fluid has the tendency to ““go around” the sharp edge. How-
ever, we may say that the fluid does not like this process, because
a very high (theoretically infinite) velocity is required at the
edge. Instead, a vortex is created at the sharp edge, and it is
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followed by a discontinuity, or vortex sheet. Now we must re-
member that, according to a fundamental principle of mechanics,
a rotation, or more exactly a moment of momentum, cannot be
created in a system without reaction. For example, if we try to
put into rotation a body, such as a wheel, we experience a re-

c
= rlnr-o
L ey

ction. Or in the
case of a helicopter with one rotor turning in one direction, we
need a device to prevent the body of the craft being put into
rotation in the opposite sense. Similarly, if the process of putting
a wing section in motion creates a vortex, i.e., a rotation of a
part of the fluid, a rotation in the opposite sense is created in the
rest of the fluid. This rotary motion of the fluid appears as the
circulation around the wing section. In a way analogous to what
we have seen in the case of the tennis ball, the circulation creates
higher velocity (lower pressure) at the upper, and lower velocity
(higher pressure) at the lower, surface of the wing. In this man-
ner a positive lift is produced.

It is clear that this point of view changes the whole pliysical
picture concerning lift. In earlier times the instinctive impression
was that the air hits the inclined wing surface and that the air-
plane is therefore carried by the air below. We now see that the
airplane wing is at least partially hung up or sucked up by the
air passing along the upper surface. As a matter of fact, the con-
tribution to the total lift from the negative pressure or suction
developed at the upper surface is larger than the contribution
from the positive pressure at the lower surface.

Let us return to the process of the development of circulation.
We saw that a vortex is created ncar the trailing edge; it is left
behind as the wing procecds. We call this vortex the starting
vortex. It can be clearly seen in the photographs of Fig. 22.
Simultaneously, as we mentioned above, a circulation is gen-
erated around the wing section, and as long as vorticity leaves
the wing in the vortex sheet, the circulation increases. However,
it is reasonable to assume that, when the starting vortex is swept
far away, the circulation has reached its maximum value, as
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there is no longer a velocity difference between the flows leaving
the upper and lower surfaces. This assumption was put forward
independently by Kutta and Joukowski. It is called the Kutta-
Joukowski condition, or the condition of smooth flow at the trail-
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hypothesis the whole problem of lift becomes purely mathemati-
cal: one has only to determine the amount of circulation so that
the velocity of the flow leaving the upper surface at the trailing
edge is equal to that of the flow leaving the lower surface. The
rule stated in this way applies to wings with zero vertex angle
at the trailing edge. If the tangents to the upper and lower
surfaces form a finite angle, the trailing edge is a stagnation
point, 1.e., the velocity computed from both sides is zero.

The Kutta-Joukowski condition seems to be a reasonable hy-
pothesis, both because it is indicated by visual observation and
also because the lift calculated by means of this condition is in
fair accordance with measurements. A comparison between
theory and experiment is shown in Fig. 23, where the lift co-
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Fig. 23. Lift coefficient Cp,
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efficient is plotted against the angle of attack, «, for a typical
wing section. The lift coefficient, C;, is a nondimensional quantity
obtained by dividing the lift force per unit width by the chord
length, L, and by the dynamic pressure, 3pU%, where p is the
dcns1ty of ﬂuld and U is the velocity of flight or the veloc:lty

by calculation agrees fairly well with measured values provided
that the angle of attack is not large. The calculated pressure
distribution for the same wing section is also compared with the
measured result in Fig. 24, where the difference between the

P+I LOWER SURFACE
0526 40 60 _=>100
-1y UPPER SURFACE
o x=6.4"
THEORY
“3[  —— EXPERIMENT

Fig. 24. Pressure distribution along the chord of an

N.A.C.A. 4412 airfoil at an angle of attack a = 6.4°.

P is the pressure on the surface relative to that of the

stream, divided by the dynamic pressure of the stream,

and X is the distance along the chord in percentage of

the chord. The circulation theory of lift is compared
with the experimental result.

pressure acting on the surface (both upper and lower) and the
pressure prevalhng in the undlsturbed flow, divided by the dy-

and experiment is good.
Here I want to point out that the result of this theory, which
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we call the circulation theory of lift, differs considerably from
Newton’s theory. In Newton’s theory it is assumed that the air
mass which is deflected is the amount of air which directly hits
the surface of the body. If the chord of the flat plate is L and
the angle of attack is e, thcn the mass of air which is deflected
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p- 10) According to the circulation theory, however, it is pro-
portional to 3.14 L. If a is 5° for example, sin a being less
than o.1, Newton’s result is in error by more than a factor of 30.
A comparison between Newton’s "theory and the circulation
theory is also seen in Fig. 14 (p. 26), which shows the non-
dimensional normal force (i.e., the force component normal to
the plate; whereas the lift is the component normal to the direc-

tion of the relative stream) plotted against the angle of attack.

Limitation of the Wing Theory: Stall

Fig. 23 shows that the usefulness of the theory is restricted to
a limited range of angle of attack, comprising relatively small
angles, positive and negative. Beyond this range the measured
lift falls far below the values predicted by the theory. The physi-
cal explanation of this discrepancy—supported by visual observa-
tion—is the following: As already mentioned, the lift acting on
a wing is due to a difference in pressure between the upper and
lower surfaces. This difference in pressure can only be main-
tained if the flow follows the surface. At small angles of attack
the flow has little difficulty in following the surface. As the angle
is increased, however, the air finds it increasingly difficult to
maintain contact, especially on the upper surface, where it has
to work its way against increasing pressure, and it separates from
the surface before reaching the trailing edge. The separation re-
sults, first, in a considerably lower value of circulation than that
which the Kutta-Joukowski condition prescribes and, second, in
an actual decrease of circulation with an increa S'T‘g ﬂglf:‘ of
attack. Thus there exists a certain critical angle of attack for
every wing section, beyond which the lift no longer increases
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with the angle but starts to decrease. Then the wing is said to be
stalled. This phenomenon has great importance, because it de-
termines the maximum load that the wing can sustain at a given
speed and, in particular, the safe landing speed of an airplane.

Stall also sometimes appears to occur to birds. One can make
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tried to do this with seagulls on the shore of Lake Constance.
I had bread in my hand and as the birds tried to get it, I slowly
withdrew my hand. Then the birds tried to decrease their speed
to get it, which required an increased lift coefficient. Several
times, apparently, the birds exceeded the critical angle of their
wings and stalled. The difference between the bird and an air-
plane is that the bird can easily produce additional lift by vigor-
ously flapping its wings.

The phenomenon of flow separation depends largely on viscous
effects, which are neglected in the circulation theory of lift. We
do not yet have a reliable theory to predict the angle at which
a stall will occur nor the flow pattern around the wing when it
is stalled. We know, however, certain means which are effective
not to prevent completely, but to postpone, the stall. Such means
are called high-lift devices.

One such device is a slot near the leading ‘edge, an invention
of Gustav Lachmann and Sir Frederick Handley-Page. The slot
prevents flow separation from the neighborhood of the leading
edge, which is the most dangerous type of separation. Instead of
a fixed slot in the wing, one can also arrange a movable winglet
ahead of the leading edge. The winglet is moved ahead auto-
matically by the negative pressure at high angles of attack and
creates a slot which is kept closed in normal flight. Lachmann,
a German pilot in the First World War who later earned his
doctor’s degree at the University of Aachen with a thesis on the
theory of the slot, told me that he conceived the idea of the slot
while in a military hospital after a serious accident due to stalling.
Handley-Page in England independently arrived at the same in-
vention. Later they worked together. Another device for delay-
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ing stall is the split flap or the slotted flap fitted near the trailing
edge. Almost every airplane has such a trailing-edge flap, and
you can watch it in operation during landings.

T hree- Dimensional Wing Theory (Wing of Finite Span)
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theory, only Lanchester went further than the problem of a wing
of infinite span with constant section. He was the first man to
attack the problem of a wing of finite span. He had the idea
that, if a wing, by its motion, creates a circulation around itself
—what he called a ‘“‘peripteral motion”—then it must really
behave as a vortex, i.e., it must induce a flow field just as a
vortex scgment of the length of the span would do. So he re-
placed the wing by a bound vortex, “bound’ meaning that it
cannot swim frcely in the air like a smoke ring but moves with
the wing. Its core is the wing itself. According to the Helmholtz
theorem (Ref. 6), however, a vortex cannot begin or terminate
in the air: it must end at a wall or form a closed loop. So Lan-
chester concluded that, if the bound vortex ends at the tip of the
wing, there must be some continuation, and this continuation
must be a free vortex—‘free’” because it is no longer confined to
the wing. Therefore, the wing can be replaced by a vortex system
consisting of a bound vortex which travels with the wing and free
vortices springing from the wing tips and extending downstream.
Lanchester recognized this basic fact, as is shown by his drawing
of the vortex system reproduced in Fig. 25.
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Sometimes one can see the tip vortices when they are made
visible by condensation trails. The air is sucked into the low-
pressure vortex core and is cooled by thermal expansion to such
a degree that the water vapor contained in the air condenses.

Forest Service.)

The system of free vortices gives rise to a velocity field, called
the field of induced velocities, in which each constituent vortex
with horizontal axis sets up a circulatory motion of air. We are
especially interested in the vertical component of the velocity in
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this field, which we call the downwash. According to general
mechanical principles, every force acting on a body moving
through- the air must have its counterpart in the momentum
imparted to the air. Thus the lift gives rise to a downward mo-

This concept also gives the correct answer to the age-old
question concerning the energy required for sustentation. I re-
ferred in Chapter I to early speculative calculations of the amount
of work necessary for sustentation. Lanchester, however, was the
first man to point out that the kinetic energy of the downwash
field represents the work necessary to obtain sustentation. One
important consequence is that no such work would be necessary
if the wing were infinitely long. If we compare two wings with
the same lift and the same area but with different spans, we find
that the work is less for the longer wing than for the shorter.
The ratio between the span and the mean chord is called the
aspect ratio. Lanchester was the first to recognize the importance
of the aspect ratio of the wing in connection with the work re-

>

quired for sustentation.

Lanchester and Prandt(

The man who gave modern wing theory its practical mathe-
matical form was one of the most prominent representatives of
the science of mechanics, and especially fluid mechanics, of all
time, Ludwig Prandtl (1875-1953). He was my teacher at
Gottingen University; I was his assistant. His greatest contribu-
tions to fluid mechanics were in the field of wing theory and the
theory of the boundary layer, of which I will speak in the next
chapter.

Prandtl, an engineer by training, was endowed with rare
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ability in putting them into relatively simple mathematical form.
His control of mathematical methods and tricks was limited;
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many of his collaborators and followers surpassed him in solving
difficult mathematical problems. But his ability to establish sys-
tems of simplified equations which expressed the essential physi-
cal relations and dropped the nonessentials was unique, I believe,
even when compared with his great predecessors in the field of
: like Leonhard Euler ( ) and D’Alem

mechanics—men like Leonhard Eule and D’Alem-
bert. He obtained much of his training from August Féppl
(1854-1924) in Munich. Féppl himself did pioneering work in
bringing together applied and theoretical mechanics. Later
Prandtl became Foppl’s son-in-law, following the good German
academic tradition. There is a saying—I do not know its author
—that it is remarkable how often scientific talent in Germany
has descended from father-in-law to son-in-law, instead of from
father to son!

There has been some discussion in the literature of how much
credit was due to Lanchester and how much to Prandtl for the
development of modern wing theory. Lanchester, at the end of
his life, was quite embittered because he felt his contributions were
not adequately recognized. Everyone talked only of ‘“Prandtl
vortices” and the “Prandtl wing theory.” I remember that Lan-
chester came to Gottingen long before Prandtl published his wing
theory—at the time I was a graduate student there—and ex-
plained many ideas which he published later. Both Prandtl and
Carl Runge (1856-1927) were present and learned very much
from these discussions. Runge was professor of applied mathe-
matics in Goéttingen and acted as interpreter, because neither
Lanchester nor Prandtl could speak the other’s language. Some
feel that Prandtl in his publications did not give full recognition
to Lanchester, as far as priority of ideas is concerned.

Many great men who have the imagination to work out sys-
tems of ideas for themselves share the weakness of forgetting
where an early inspiration came from. For example, it seems
that Sir Joseph John Thomson (1856-1940), the great English
physicist, was somewhat that way. His pupil and friend, Sir
Francis W. Aston, once told me that it was quite amusing to tell
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something new to Thomson. If you told him an idea on Wednes-
day, he shook his head; on Thursday, again he would not be-
lieve it; but on the next Monday, he would come to you saying,
“Now, look here, the thing is so. . .” Thereupon he would
propound the same idea you had told him before, ending with,

N 4 USRSL
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1
Now, do you underst

It is hard for an active and creative brain to remember from
what reading or from what conversation the first inspiration
arose. So I am sure Prandtl never felt that he did not give full
recognition to Lanchester’s work. It was probably not quite
clear to him how many elements of the theory that he worked
out with such great success were already contained in Lanchester’s
work. Prandtl touched upon this subject on the occasion of his
delivery of the 1927 Wilbur Wright Memorial Lecture to the
Royal Aeronautical Society (Ref. 7):

In England you refer to it as the Lanchester-Prandtl theory, and
quite rightly so, because Lanchester obtained independently an impor-
tant part of the results. He commenced working on the subject before
I did, and this no doubt led people to believe that Lanchester’s investi-
gations, as set out in 1go7 in his ““Aerodynamics,” led me to the ideas
upon which, the aerofoil theory was based. But this was not the case.
The necessary ideas upon which to build up that theory, so far as these
ideas are comprised in Lanchester’s book, had already occurred to me
before I saw the book. In support of this statement, I should like to
point out that as a matter of fact we in Germany were better able to
understand Lanchester’s book when it appeared than you in England.
English scientific men, indeed, have been reproached for the fact that
they paid no attention to the theories expounded by their own country-
man, whereas the Germans studied them closely and derived consider-
able benefit therefrom. The truth of the matter, however, is that Lan-
chester’s treatment is difficult to follow, since it makes a very great de-
mand on the reader’s intuitive perceptions, and only because we had
heen working on similar lines were we able to grasp Lanchester’s mean-

ing a Ornce A o
ing at once. At th
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€ samc tim", however 3 I wish to be umum,uy under-
n many particular respects Lanchester worked on different
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lines than we did, lines which were new to us, and that we were able
to draw many useful ideas from his book.!

Prandtl’s Lifting-Line Theory: Wings with High Aspect Ratio
Prandtl (Ref. 8) systematized the ideas and simplified the

picture in the following way: (a) the wing is replaced by a lifting
line perpendicular to the flight direction; () the lifting line is
assumed to consist of a bound vortex with circulation variable
in order to account for the fact that the lift may change along
the span; (¢) in accordance with the change in the circulation
along the span, free vortices are born and extend downstream;
however, (d) the flow produced by the vortex system is considered
as a small perturbation of the fundamental stream relative to the
wing, and therefore (¢) it is assumed that the free vortices ap-
proximately follow the original direction of the streamlines parallel
and opposite to the flight direction, instead of winding up im-
mediately into a tip vortex as Lanchester assumed (Fig. 25);
(f) the flow in the immediate neighborhood of a wing section is
determined by the two-dimensional solution given by Kutta and
Joukowski.

With these assumptions the problem of lift becomes accessible
to mathematical treatment, whereas the original concept of Lan-
chester 1s difficult to express in mathematical form.

Taking into account the change of the relative wind by the
induced flow, we obtain from (f) the result that the lift of every
individual wing element, and also the total lift on the wing, are
linear functions of the angle of attack, as in the two-dimensional
theory; but the slope of the line of lift versus the angle of attack
depends on the aspect ratio and decreases with decreasing aspect
ratio. This was already recognized by Lanchester in a quali-
tative way.

Bv means of Prandtl’s theory, we can solve two problems.

if the distribution of lift alone the wing span is known
15ir1 1on of I ng the wing spa kKnown,

Reproduced by permission of the Royal Aeronautical Society.
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we can determine the flow pattern of induced velocities by a
straightforward calculation, and also the energy necessary to
obtain the lift distribution; second—and this is more interesting
for the engineer—we can determine the lift distribution along
the span when the geometry of the wing is given, i.e., when the
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the span are given. The second problem is mathematically some-
what more involved than the first one. It requires the solution of
an integral equation—not necessarily a straightforward calcula-
tion. Many methods have since been worked out to solve the
specific integral equation of the lift problem. There are analytical
methods using developments in infinite series, graphical methods,
and methods of successive approximation. One of the interesting
methods 1s that developed by Sears (Ref. g), which starts with
an idea which he and I worked up together and uses the method
of eigen-functions in the Schmidt-Fredholm manner.

The solution of Prandtl’s integral equation gives the designer
important information about the influence of such geometrical
features of a wing as aspect ratio, chord and twist distributions,
and aileron and flap displacements. Thus the wing theory be-
came the very basis of the scientific design of all our airplanes,
at least as far as the domain of moderate speeds is concerned.

To be sure, Prandtl’s theory has limitations, as does every
theory. Its first limitation is caused by the phenomenon of stall.
This is the same limitation I have already mentioned in the dis-
cussion of the two-dimensional theory of Kutta and Joukowski;
namely, the magnitude of the circulation cannot be predicted
theoretically when the angle of attack exceeds a certain limit,
because the flow separates from the surface.

The second specific limitation of the lifting-line theory con-
cerns the sweepback of the wing, a feature which has been adopted
for high-speed airplanes for reasons that will be better explained

M (hanrtar T/ Tf 1o vranrlaora n ainror\ +tharl: «. her o wararitlhia -1
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lifting line, we find difficulty in calculating the downwash be-
cause it becomes mathematically infinite on the lifting line.

54

www.ASEC.ir



THE THEORY OF LIFT

The third limitation is that the lifting-line theory does not give
a good approximation for wings of Jow aspect ratio. If the span is
not large in comparison to the mean chord of the wing, it cannot
be assumed that the flow pattern in a plane perpendicular to the
span is approximated by two-dimensional flow.

Extension of the Lifting-Line T heory:
Fones’s Theory for Low-Aspect-Ratio Wings

In the latter two cases, i.e., the wing with sweepback and the
wing with low aspect ratio, we must proceed to a more exact and
more complicated theory in which the wing is represented by a
lifting surface instead of a line. The situation is still similar to
that which occurs in the case of the lifting line. If we know the
lift distribution over the surface, we are able to calculate in a
straightforward way the flow field and the energy required to
obtain the given sustentation. If, however, the geometric shape
of the surface is given, the solution of the problem of determining
the lift distribution involves great mathematical difficulties, be-
cause we have to solve an integral equation containing a double
integral, and in this task even the best mathematicians have not
helped us much. We aerodynamicists have had to go ahead with
our own"devices. Such a theory was initiated first in Prandtl’s
school by Blenk (Ref. 10). Although a great amount of work has
been done on this problem, I cannot go into further discussion
here. Perhaps the most systematic presentation of the present
status of the question has been given by Flax and Lawrence of
the Cornell Aeronautical Laboratory (Ref. 11).

However, I would like to mention an interesting approach
toward an approximate solution of the problem for a wing with
a very low aspect ratio. The analysis in this case is remarkably
simple and is due to an ingenious scientist of the younger genera-
tion, Robert T. Jones, who works for the National Advisory
Committee for Aeronautics (N.A.C.A.) (Ref. 12).

Jones is an example of a scientist who has made great con-
tributions to aerodynamics without having the advantage of sys-
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tematic education leading to a degree. As a matter of fact, he
was in college only two semesters; thereafter he had various jobs,
including trying to build airplanes for a small company. The
depression finished this venture, and he found himself operating
an elevator in a govcrnment building in Washmgton I thought
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H
potential talents of the elevator boy, but Arthur Kantrowitz re-

cently destroyed my story; according to him Jones got a job in
the N.A.C.A. on the recommendation of his home-town congress-
man—-a story which is much less dramatic. In any case, Jones’s
superiors at the N.A.C.A. gave him a chance to continue his
studies by reading scientific literature and attending lectures.
Jones considered wings of very small aspect ratio (Fig. 27).

C

Fig. 27. The wing of low aspect ratio. The flow around every cross section
perpendicular to the flight direction can be approximatcd by the two-dimen-

sional flow around the same cross section. U is the flight spccd and « is the
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because of their application in high-speed flight. I have men-
tioned before that Prandtl assumed the flow around every cross
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section of the wing perpendicular to the span to be approximated
by a two-dimensional flow. For wings of very small aspect ratio,
Jones made the opposite of Prandtl’s assumption. He postulated
that the flow around every cross section perpendicular to the

uniform stream. This idea makes it possible to determine the lift
distribution along the chord just as the Prandtl theory gives the
lift distribution along the span.

One of the remarkable results of the theory of Jones is the
fact that the lift at any point of the chord is only influenced by
the flow ahead of the point considered and is independent of the
flow conditions downstream, whereas in Prandtl’s case of large-
aspect-ratio wings, the local lift depends largely on the influence
of the free vortices downstream. Jones’s theory furnishes an im-
portant counterpart to Prandtl’s theory and, in my opinion,
rounds out the wing theory in a very satisfactory way. I should
mention that a similar idea was used before by Munk (Ref. 13)
to calculate the forces acting on airship hulls, a problem which is
out of date today. Munk did not think of the possibility of apply-
ing the same idea to wing theory, whereas Jones recognized the
value of such a theory for the solution of a quite modern problem,
viz., that of the delta wing.

In this presentation of the theory ot lift, I have deliberately
left out an important aspect, namely, the influence of viscosity
on lift phenomena. As a matter of fact, the influence of vis-
cosity enters in almost every aerodynamic problem when we go
into a more complete analysis. However, we shall discuss the
viscous phenomena in the next chapter, in connection with the
problem of drag, where viscosity has a primary influence.
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CHAPTER II1

» Theories of Drag
and Skin Friction

IN THE last chapter we considered the lifting power of a wing.
All the forces involved were pressure forces on the wing, e.g.,
positive pressure on its lower, and negative pressure on its upper,
surface. We neglected the forces acting tangentially to the sur-
face, which are called frictional forces. When we consider drag,
we can no longer neglect frictional forces.

Let us analyze all the forces that act on a body moving through
a fluid originally at rest. We have pressure drag and frictional drag.
Pressure drag is the component, parallel to the direction of mo-
tion of the body, of the force resulting from all the pressures.
Frictional drag is the resultant of all the tangential forces taken
in the same direction. Pressure drag has its origin in two phe-
nomena. One is related to the lift, that is, to the work which
must be expended to obtain lift. The force which necessitates the
expenditure of this work is called induced drag. The other part of
the pressure drag is independent of lift, and I should like to cal-
it wake drag.

The induced drag is zero if the span is infinite. In this case,
as was shown in the last chapter, no work is required for sustental
tion; hence there is no induced drag. The wake drag is zero if we
neglect friction and assume that the flow closes around the wing,
as it is described by the mathematical solution for nonviscous
fluids. This is according to the theorem, mentioned earlier, which
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we called the paradox of DD’Alembert. In real fluids, however,
because of frictional effects, the streamlines do not follow the
surface of the body back to the rear end but separate from the
surface somewhere, thus lecaving downstream an eddying region

called the wake. Conscquently, the pressure over the rear part of
the h

el
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the nonviscous flow. Because the pressures at the front and at
the rear are no longer balanced, a pressure drag occurs. This is
the wake drag.

The wake drag and the frictional drag together are called
profile drag, because they are determined by the local cross sec-
tion (profile) of the wing. There are, therefore, two standpoints
for classifying drag: one, whether drag comes from pressures or
from frictional forces; the other, whether it depends on lift or
on the profile of the wing.

Induced Drag

Let us consider these different kinds of drag somewhat more
closely. The aeronautical engineer generally uses nondimensional
coefficients instead of the forces themselves. For example, the
lift coefhicient, C;, already used in Chapter II, and the drag co-
efficient, Cp, are defined by dividing the lift and drag, respec-
tively, by the wing area and by the dynamic pressure corre-
sponding to the velocity of flight. The dynamic pressure is the
amount of pressure increase which appears when the fluid flow
of density, p, and velocity, U, is brought to rest; it is equal to
zpU* Fig. 28 is a diagram very familiar to aeronautical engineers,
the so-called polar diagram, in which the lift coefficient is plotted
against the drag coefficient. The angle of attack is used as a
parameter. The data are the results of wind-tunnel measure-
ments on wings of aspect ratio ranging from 1 to 7 (Ref. 1).
The aspect ratio, as explained in Chapter II, is obtained by
dividing the span by the mean chord.

Now according to the lifting-line theory of Prandtl, the co-
efficient of induced drag is proportional to the square of the lift
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Fig. 28. Experimental values of lift coefficient C,
against drag coefficient C, for a series of wings of
different aspect ratios. The numbers on the curves
refer to the aspect ratios. (From L. Prandtl, “ Ap-
plication of Modern Hydrodynamics to Aero-
nautics,” N.A4.C.A. Report No. 116 [1921]}, by per-
mission of the National Advisory Committee for
Aeronautics.)

coefficient and inversely proportional to the aspect ratio, at least
for large aspect ratios. If there were only induced drag, the drag
would be zero when the lift is zero. However, as shown in Fig.
28, this is not the case because there exist also wake drag and
frictional drag. These two we cannot separate by simple measure-
ment; their sum is, as noted above, the profile drag. If we assume
that the profile drag is independent of the aspect ratio, then by
using Prandtl’s theory we can reduce the polar diagram for a
certain aspect ratio to that for another aspect ratio. This was
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actually done in Fig. 29, where the measured values for wings
of various aspect ratios are reduced to the curve for aspect ratio
5 by means of Prandtl’s thcory. The result indicates that the
theoretical prediction is very nearly correct. A certain scattering
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I have described induced drag as the drag which must be
counteracted in order to obtain lift. Thus we arrived at the con-
cept of induced drag from the consideration that work must be
done to create the downwash velocity related to the lift. Another
explanation of induced drag which follows more closcly the local
flow phenomena is the following: Suppose that the airplane is
flying in a horizontal direction. The wing is of finite span, so
that free vortices spring from it and produce a field of induced
velocities. The velocity induced at the wing itself is directed
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essentially downward; hence, when it is combined with the un-
disturbed relative velocity, the air appears to approach the wing
along a slightly downward slope (Fig. g0). This means a reduc-
tion of the effective angle of attack and is responsible for the
decrease of the slope of the lift curve mentioned in Chapter II.

e the Lift farce avicard iy ~iveas
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ion is always perpen-
dicular to the direction of the relative flow, it is inclined slightly
backward from the perpendicular to the direction of flight. The
component parallel to the flight direction is the induced drag.
‘I'his explanation clarifies the fact that induced drag originates

in pressure forces acting on the wing.

-
Y

INDUGED
DRAG

LIFT
Fig. 30. Explanation of the

production of induced drag.

L,

DIRECTION OF FLIGHT

I should like to make one more remark about induced drag.
Induced drag is inevitable if there is lift and the wing span is not
infinite. The question is how to make induced drag as small as
possible. This problem was solved by Max Munk, a student of
Prandtl (Ref. 2), in his doctor’s thesis at Goéttingen. Munk later
came to this country to work for the National Advisory Com-
mittee for Aeronautics, became a professor at the Catholic Uni-
versity of America, and has also been associated with the work
of the Naval Ordnance Laboratory. He showed that the minimum
induced drag is obtained if the distribution of lift over the span
corresponds to an ellipse. Such a distribution of lift is called an
clliptic distribution.

Getting this result involved a lot of work. I remember when
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Prandtl was working on his lifting-line theory in the summer of
1914 and I, having a commission in the Austro-Hungarian Army,
was called home and passed through Gottingen.

“Now look here,”” Prandtl told me, “I am calculating these
damned vortices and can’t get a reasonable result for the induced

r]rn(r I ir 1ed to make the Lift o r] nlv dron to zero at thc Win
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tips, but the induced velocity becomes infinite. All right, I
thought, Nature does not like such a discontinuity, so I made
the lift increase linearly with the distance from the wing tip.
That did not work either. This distribution of lift also does not
produce finite induced velocity at the tip.”

“Well, this is interesting. I will think 1t over, too,” said I.

But I was too busy with the war to study the problem. Prandtl
continued to work on it and later found the solution. It is, more
or less, a mathematical trick: the problem can be solved if the
lift 1s assumed to start with the one-half power of the distance
from the wing tip, as, for example, in the case of the elliptic
distribution found by Munk. Munk was one of Prandtl’s most
important collaborators during this period, and his contribution
was certainly a significant part of the whole picture of wing
theory-.

According to the Prandtl-Munk formula, the minimum induced
drag of a wing which produces a lift, L, is equal to 2L%/wpl%?
where 4 is the span of the wing, U is the velocity of flight, and
p is the density of the air. Therefore the minimum power, P, re-
quired for sustentation of a weight, W, is given by

It is interesting to compare this result wit

tion of Renard, which we sketched in Chapter I. His formula for
the power required for sustentation was

W2
2pUS ’

where § is the wing area. This formula is based on an empirical
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law for the normal pressure exerted on a flat plate. The two
formulas, ancient and modern, coincide if we take the aspect
ratio equal to 4/7 or 1.27. The ancient theory was rather pessi-
mistic, because the power required is considerably reduced at

the larger aspect ratios that are used in most airplanes.
Althanoh for 7
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lift-drag ratio and long range, very large aspect ratios would be
desirable, structural considerations limit the practical values for

Avn arfAarmance
Q Ce

n sr far
l-’\zl AV ISP YREN N Ll 11k

ASAOTYIOMNT D
[} \.—Dl.lbbl.cl

moderate-speed airplanes to around 8 or 1o. A significant excep-
tion is the transport airplane recently built by Hurel-Dubois in
France, which has an aspect ratio of about 20. Assertedly a
specifically designed strut inserted between fuselage and wing
secures the necessary structural rigidity of the wing without ex-
cessive penalty in weight. For airplanes approaching or surpass-
ing sonic velocity, the induced drag is relatively small in com-
parison with the other drag components; hence, in such air-
planes, the designers usually employ small aspect ratios, down to
2 or even 1.5,

Wake Drag and Vortex Street

Now we come to the question of wake drag. According to
D’Alembert’s theory the wake drag is zero. Kirchhoff and Ray-
leigh tried to avoid this conclusion by assuming that surfaces of
discontinuity are formed at the edges of the plate (see Chapter I).
Phuysically, however, this is quite improbable, because it means
that an infinite mass of fluid is carried with the plate as ‘““dead
fluid.” This remains improbable even when the plate is accel-
erated from rest very slowly. It must be admitted that the real
flow pattern is not well understood. Take, for example, the
apparently simple problem of a sphere moving uniformly in a
fluid; we do not know exactly how the flow pattern looks.

There is, however, at least one case in which we know some-
i : this is the flow around
an infinitely long cylinder. Fig g1 is a picture taken by a sta-
tionary camera of a circular cylinder moving to the left through
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a fluid originally at rest. We observe a double row of alternating
vortices following the cylinder. The vortices in the upper row
are turning clockwise, while those in the lower row are turning
counterclockwise. This system of vortices replaces the infinite
mass of fluid assumed to follow the body in the theory of Kirchhoff

and Rayleigh. Indeed, the surfaces of disconti
this theory can be considered as vortex sheets, and one finds, in
general, that such vortex sheets are unstable. Also thev have the

tendency to roll up so that the vorticity concentrates around

.
ity accnimed In
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certain points.

I. Tani, Fluid Mechanies [in Japanese], [copyright 1951, Iwvanami Shoten], by
permission.

The arrangement of the vortices shown in Fig. 31 1s connected
with my name; it is usually called a Adrmdn vortex streel or a
Kdrmdn vortex trail. But 1 do not claim to have discovered these
vortices; they were known long before I was born. The earliest
picture in which I have seen them is one in a church in Bologna,
Italy, where St. Christopher is shown carrying the child Jesus
across a flowing stream. Behind the saint’s naked foot the painter
indicated alternating vortices. Alternating vortices behind ob-
stacles were observed and photographed by an English scientist,
Henry Reginald Arnulpht Mallock (1851-1933) (Ref. 3), and
then by a French professor, Henri Bénard (1874-1939) (Ref. 4).
Bénard did a great deal of work on the problem before I did, but
he chiefly observed the vortices in very viscous fluids or in col-
loidal solutions and considered them more from the point of view
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of experimental physics than aerodynamics. Nevertheless, he was
somewhat jealous because the vortex system was connected with
my name, and several times—for example, at the International
Congresses for Applied Mechanics held in Zurich (1926) and in
Stockholm (19g30)—claimed priority for earlier observation of the

and London is called ‘Kdrmdn Street’ in Paris shall be called

Y

‘Avenue de Henri Bénard. After this wisecrack we made
peace and became quite good friends.

What I really contributed to the aerodynamic knowledge of
the observed phenomenon is twofold (Ref. 5): I think I was the
first to show that the symmetric arrangement of vortices (Fig. 32,

upper), which would be an obvious possibility to replace the

R C

Fig. 32. Double rows of alternating vortices; symmetric (upper} and asymmetric
(lower) arrangements.

vortex sheet, is unstable. I found that only the asymmetric ar-
rangement (Fig. 32, lower) could be stable, and only for a certain
ratio of the distance between the rows and the distance between
two consecutive vortices of each row. Also, I connected the
momentum carried by the vortex system with the drag and
showed how the creation of such a vortex system can represent
the mechanism of the wake drag—a point for which neither
Mallock nor Bénard cared very much.

Perhaps I should tell how I became interested in the pro
In 1911 I was a graduate assistant in Gottingen. At that time
Prandtl’s main interest was in the theory of the boundary layer
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(which we will take up later), i.e., the flow of the fluid very close
to the surface of a body. Prandtl had a doctoral candidate, Karl
Hiemenz (Ref. 6), to whom he gave the task of constructing a
water channel in which he could observe the separation of the
the separation
theory. For this purpose, it was first necessary to know the pres-
sure distribution around the cylinder in a steady flow. Much to
his surprise, Hiemenz found that the flow in his channel oscillated
violently.

When he reported this to Prandtl, the latter told him: “Ob-
viously your cylinder is not circular.”

However, even after very careful machining of the cylinder,
the flow continued to oscillate. Then Hiemenz was told that
possibly the channel was not symmetric, and he started to adjust it.

I was not concerned with this problem, but every morning
when I came in the laboratory I asked him, “Herr Hiemenz, is
the flow steady now?”’

He answered very sadly, “It always oscillates.”” !

Now, I thought, if the flow always oscillates, this phenomenon
must have a natural and intrinsic reason. One weekend I tried
to calculate the stability of the system of vortices, and I did it in
a very primitive way. I assumed that only one vortex was free to
move, while all the other vortices were fixed, and calculated
what would happen if this vortex were displaced slightly. The
result I got was that, provided a symmetric arrangement was
assumed, the vortex always went off from its original position. I
obtained the same result for asymmetric arrangements but found
that, for a definite ratio of the distances between the rows and
between two consecutive vortices, the vortex remained in the
immediate neighborhood of its original position, describing a
kind of small closed circular path around it.

! Hiemenz later succeeded in making the flow almost steady by introducing
still water into the wake region from below.
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I finished my work over the weekend and asked Prandtl on
Monday, “What do you think about this?”’

“You have something,” he answered. “Write it up and I will
present your paper in the Academy.”

This was my first paper on the subject. Then because I thought
my assumption was somewhat too arbitrary, I considered a sys-
tem in which all vortices were movable. This required a little
more complicated mathematical calculation, but after a few
weeks I finished the calculation and wrote a second paper.

Some people asked, “Why did you publish two papers in three
weeks? One of them must be wrong.” Not exactly wrong, but
I first gave a crude approximation and afterward refined it. The
result was essentially the same; only the numerical value of the
critical ratio was different.

Now these vortices have many physical applications. Shortly
after the publication of my paper, Rayleigh (Ref. 7) got the idea
that the alternating vortices must give the explanation of the
Acolian harp—the singing wires. Some people will still remem-
ber the singing wires of the biplane cellules. The singing comes
from the periodical shedding of vortices. When certain struts used
on an underwater vehicle sang a high tune, Gongwer (Ref. 8)
showed experimentally that the vibration was caused by the
periodical shedding of vortices, which occurred when the trailing
edges were not properly sharp. This also explains the singing of
marine propellers, as was previously found by Gutsche (Ref. g).

A French naval engineer told me of a case where the periscope
of a submarine was completely useless at speeds over 7 knots
under water, because the rod of the periscope produced periodic
vortices whose frequency at a certain speed was in resonance with
the natural vibration of the rod. Radio towers have shown reso-
nant oscillations in natural wind. The galloping motion of power
lines also has some connection with the shedding of vortices. The
collapse of the bridge over the Tacoma Narrows was also caused
by resonance due to periodic vortices. The designer wanted to
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build an inexpensive structure and used flat plates as side walls
instead of trusses. Unfortunately, these gave rise to shedding
vortices, and the bridge started torsional oscillations, which de-
veloped amplitudes up to 40° before it broke. The phenomenon
was a combination of flutter and resonance with vortex shedding.

]-‘\:n]r'l rTaoTIMTY ]'\Ith ‘F m £y I‘\ov‘
A § 8 A ™

T avry alwave nre ena ad o he [{a) o +
LWL § L | e W LU L bDlJUl.l. lu.l.b 1\.} HULLLIL LLLALL

I am always prepa
mischief that the Karman vortices have caused!

I want to mention briefly the problem of reducing wake drag.
As I explained at the beginning of this chapter, wake drag is
caused by the fact that the streamlines do not follow the entire
surface of the body but separate from it at some point. For ex-
ample, in a circular cylinder, the streainlines separate from the
surface somewhere midway between the front and rear, thus leav-
ing downstream an eddying region of considerable extent. Such
a separation may be, if not completely eliminated, at least post-
poned if we carefully shape the contour of the body, especially at
the rear, so that the streamlines can follow the surface as far as
possible. An airship hull 1s a good example of this sort of body,
which 1s usually called a streamiine body. Another example is the
slender wing profile shown in Fig. 53 (p. 126).

For such a streamline body the paradox of D’Alembert is very
nearly correct, since the pressures acting on the front and rear
parts of the body are almost 1n balance. The body still experiences
a drag, because there are frictional forces acting on the surface
and also because the pressure forces cannot be completely bal-
anced. However, the drag i1s usually rather small. For example,
the drag of a carefully shaped airship model can be reduced to
a value less than one-fiftieth of that of a disk of the same diameter
placed normal to the stream. The distribution of pressure acting
on such a body, except in the area near the rear end, can be
calculated by the theory of nonviscous fluids with sufficient ac-
curacy. The so-called method of sources and sinks first suggested
b'y' W. j Luacquorn Rankine \184U—IU/4} has been used for this

purpose by a number of investigators. One practical method of
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solution actually used in the design of Zeppelin airships was put
forward in a paper I published in 1927 (Ref. 10).

In airplane design the principle of “streamlining” has been
extensively applied to achieve reduction of drag, for example, by
rctracting landing gcars attaching fillets to the junction between

Vi nd fuselage. fairing the line ockpit and windshield

wing and fuselage, fairing the li he cockpit and windshield,
and the like. Thus the wake drag of a modern high-speed airplane
with clean lines has been reduced to a very small value. What
remains to be done is to reduce the residual part of the drag, 1.e.,
the skin friction. This problem will be discussed toward the end
of this chapter.

Reynolds Number

If we investigate the drag phenomenon further, we see that
the case in which drag is produced by vortex shedding is a spe-
cial one. For example, if we measure the drag of a circular
cylinder moving at various velocities, we find three different
regimes of velocity. When the velocity is sufhiciently small, the
drag 1s proportional to the velocity; hence the drag coefficient is
inversely proportional to the velocity. No alternating vortices
can be observed in this speed regime. When the velocity 1s in-
creased, the drag coefficient becomes almost independent of the
velocity, and we can observe a regular pattern of alternating
vortices. When the velocity is further increased, the periodical
vortex shedding still persists, but the beautiful regular pattern no
longer exists. Then, more or less suddenly, the drag coefficient
drops to a substantially smaller value.

Now the question arises, What determines these curious changes
in the magnitude of the same coeflicient? This question is related
to.a fundamental problem that was first studied in 1883 by Os-
borne Reynolds (1842—-1912), a professor at the University of
Manchester (Ref. 11). The problem is, What is the prevailing
ldW Ul. blmlldrlLY IH Hl_ll(l HlC'Cndl'llLb"

Before discussing this problem, however, I should explain some-
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thing about the nature of fluid friction. Fluid friction is not like
solid friction, such as the friction between a book and a desk
when the book as a whole is made to slide over the surface of the
desk. The action of friction between moving fluild and a solid
surface is better illustrated by the following example: Suppose
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upper cover is slowly pushed parallel to the surface of the desk.
The pages slide over each other, but the lower cover sticks to the
desk. Similarly, fluid particles stick to the surface of a body, so
that there is no slip between fluid and solid surface. Near the
surface, however, the fluid velocity increases with the distance
from the surface, i.e., it exhibits a certain gradient. The velocity
gradient across the flow produces friction between successive fluid
layers which we call viscous friction. The sticking of the fluid to
the surface is probably explained by the molecular or atomic
structures of the solid and the fluid. Both consist of particles,
atoms or molecules. The motion of the molecules in an airstream
consists of a forward motion in the stream direction, on which a
random motion is superposed. The atoms of the solid have a
fixed mean position with empty spaces between. In general,
according to the physicists, there is much more empty space in
the world than space occupied by matter. If the molecules enter
the empty spaces of the solid, they lose their forward velocity by
collision with the solid molecules; and, if they rebound, they re-
turn with random velocity without preference for any flow direc-
tion. Hence the average velocity of the airflow right at the surface
is zero, or equal to the velocity of the solid when the solid is
moving.

At very high altitudes where the density of the air is very small
and the air molecules are very far apart, the air can slip at the
solid surface, as one solid slips on another one. (The branch of
aerodynamics dealing with such phenomena is called superaero-
u/yﬁ(i?ﬁiw, but we shall fOI‘gﬁt about it for the present an 1d igl‘lOI“G
the flow of such low-density air.) We assume, therefore, that the
velocity of the air is identical with the velocity of the solid at
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the surface and that the friction acting both at the surface and
in the interior of the flow is viscous friction, determined by the
gradient of the velocity across the flow.

The law governing viscous friction was originally given by

Newton (Ref. 12) and later gcnerahzed in the form of a system of
hes ande T.0n |c }‘/I_ H Navier (‘r"'!Qr'-—
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mathematical equa
1836) (Ref. 13) and Sir George G. Stokes (1819g-1903) (Ref. 14).
It is assumed that the tangential force acting on a unit area be-
tween two adjacent layers of fluid is proportional to the gradient
of the velocity across the flow. The constant of proportionality is
called the coeflicient of internal friction or viscosity, and is one
of the characteristic physical constants of the fluid. It is large
for “sticky’’ fluids like lubricating oil and small for ‘“watery”
fluids like water itself or air.

Let us now consider flow phenomena in which the geometrical
arrangements as to the shapes of the boundaries or immersed
bodies are similar. For example, we consider two flow patterns
in each of which a sphere moves with a uniform velocity through
an infinitely extended fluid at rest. The diameter of the sphere,
the velocity of motion, and the density and viscosity of the fluid
may be different. We want to find the condition that will permit
the flow pattern to remain similar. In other words, we want to
find the law of mechanical similarity for geometrically similar
arrangements.

First, all the forces acting on a fluid element must be listed.
These are gravity, friction, force of inertia, and pressure. Let us
forget for a while about gravity, since gravity usually has no
noticeable influence in aerodynamic phenomena which have
local character, although it is important in large-scale phenomena
like those treated in the science of weather. In an incompressible
fluid, the pressure is a kind of passive reaction, whose magnitude
1s just sufhicient to balance the other forces acting on a fluid
clement. Hence it is enough for us to consider the friction and
the inertia forces. If the ratio between these two forces remains
unchanged, the flow pattern will remain similar.
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The inertia force acting on a fluid element is equal to the rate
of change of the momentum in unit time. The length scale of the
pattern may be characterized by an appropriately chosen length
L, eg., the diameter of the sphere. If U is the characteristic
velocity, such as the velocity of motion, the time scale of the
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inally, let p
u the coefficient of viscosity of the fluid. Then the masses of the
two corresponding fluid elements in the two flow patterns will
be in the ratio pl3, the respective values of the momentum in
the ratio pL3l’, and the rates of change of the momentum in the
ratio pL3U X U/L, or pL*U% We could have started with this
expression by arguing that the inertia force must be proportional
to the dynamic pressure $p{® and that the force acting on corre-
sponding elements is thercfore proportional to 1pU? X L2

The frictional force acting on a unit area is proportional to
ul'/L, because it is equal to the velocity gradient across the flow
multiplied by the coeflicient of internal friction u. The resultant
of the frictional forces on a fluid element is then proportional to
(uU/L) X L%, or uUL. Hence the ratio between the inertia and
the frictional forces is proportional to

plPL?  pUL or UL ,
UL~ v

where v = u/p is called the coefficient of kinematic viscosity.
If we compare stresses, i.e., forces acting on a unit area of a fluid
element, we find that, in order to achieve mechanical similarity,
the normal stress or pressure proportional to pU? must be in a
constant ratio to the tangential or frictional stress, proportional
to ulU/L.

In summary we may say that, if the ratio U/L/v has the same
numerical value for two flow systems, then we may expect the
flow patterns to remain similar. In other words, if the diameter
first system is twice as large as that o
second system, then we must make the velocity of the sphere of
the first system equal to half of the velocity in the second system
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in order to get similar flow patterns, provided the motion takes
place in a fluid with the same kinematic viscosity. If the kinematic
viscosity of one system is one-tenth that of another, the product
of the linear dimension and the velocity of the first system must
also be ten times smaller in order for the flow patterns of the two
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quantity and is called the Reynolds number.

One very illustrative example of the similarity law announced
in the past paragraph is the method of increasing the Reynolds
number in wind-tunnel experiments. In general, the dimensions
of a wind-tunnel model are reduced in a certain scale relative to
the prototype. Nevertheless, mechanical similarity can be achieved
by using a fluid of low kinematic viscosity, an idea independently
suggested by Margoulis (Ref. 15) and Munk (Ref. 16). Munk,
in particular, considered the feasibility of a wind tunnel utilizing
compressed air as its working fluid, and following this idea the
variable-density wind tunnel was constructed at the N.A.C.A. Since
the coefficient of viscosity, u, of a gas is but little influenced by
the density or pressure, the effect of increasing the pressure is to
reduce the kinematic viscosity.

According to the kinetic theory of gases, the coefficient of in-
ternal friction, u, is proportional to pcA where ¢ is the mean
molecular velocity of thermal agitation and A is the mean free
path of a molecule. Thus, except for a numerical factor, the
Reynolds number may also be expressed by

U L

N
that is, the product of the ratio of the velocity of the body to the
molecular velocity and the ratio of the linear dimension of the
body to the mean free path. As we shall show in the next chapter,
the molecular velocity is of the same order of magnitude as the
sound velocity; the mean free path for air at normal conditions
is very small—of the order of two-millionths of an inch in length.
Hence as far as ordinary low-speed flow is concerned, U/c is
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small and L/\ is very large, and only their product appears in
the law of similarity in the form of the Reynolds number. How-
ever, if the velocity is near the velocity of sound, the ratio U/c is
no longer small, and it appears separately as a second similarity
parameter ThlS parameter is called the Mack number, and we
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Under certain conditions the ratio L/\ becomes a second,
dependent, governing parameter, namely, if the mean free path
is comparable to the dimension of the body. This occurs, for ex-
ample, in the case, already mentioned, of a body moving in air of
very low density, e.g., at high altitude. In this case we are in a
range where the mechanics of continuous fluids no longer apply,
and collisions between molecules have to be considered.

Let us exclude the cases where the velocity is commensurable
with sound velocity and the mean free path is commensurable
with the body dimensions. Then the Reynolds number is the sole
governing parameter, and if the Reynolds number has the same
value the flow is similar and therefore all nondimensional co-
efficients must have the same values. In other words, the non-
dimensional parameters are in general to be considered as func-
tions of the Reynolds number. I was not quite correct when I
said that the drag coefhcient of a circular cylinder depends only
on the velocity. This is true if the diameter of the cylinder and the
kinematic viscosity of the fluid are kept unchanged. In fact, the
drag coefficient of a circular cylinder depends on the Reynolds
number, as shown in Fig. 33.

It is an interesting fact that neither Reynolds himself nor other
British scientists who followed him gave a specific name to the
nondimensional parameter UL/v; it was Arnold Sommerfeld
(1868-1952) who named the parameter in honor of Reynolds in
1908. The, Revnolds number is now generally used in hydro-
dynamics, acrodynarmcq, hydraulics, and other sciences which
have to do with fluid flow. It works in some cases al
black magic.

I recall the following experience: In 1gr1 a well-known Ger-
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2L

DRAG COEFFICIENT
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Fig. 33. The drag coeflicient of a circular cylinder as a
function of the Reynolds number.

man physical chemist, Emil Bose, published a paper containing
very careful measurements on the pressure drop in pipe flow of
various organic liquids (Ref. 17). He used identical apparatus for
all liquids and measured the time required for equal volumes of
different liquids to flow through the same pipe, and the corre-
sponding pressure difference between the two ends of the pipe.
Comparing the results for different liquids, he found that chloro-
form, for example, is less viscous than .water at low speeds, but
it behaves almost the same as water at higher speeds; bromoform
is more viscous than mercury at low speeds, but it becomes “‘less
viscous’ than mercury at higher speeds. Apparently, ““less viscous”
in this case means that a smaller pressure difference is required
for the same rate of flow. I suggested the use of the Reynolds
number—defined as the mean velocity multiplied by the pipe
diameter and divided by the kinematic viscosity—as parameter
and found that the formulas which Bose proposed for the repre-
sentation of his experimental results with nine liquids could be
unified into one single formula (Ref. 18).

Fig. 34 represents in logarithmic scale the measured pressure
drop, P, versus the time required, 7, for the outflow of the same
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volume, Q, of four selected liquids (Q = 8.81 cubic centimeters).
In Fig. 35 the nondimensional quantity, P7T/u, is plotted as a
function of another nondimensional quantity, pQ*/uT, which for
similar geometrical arrangement of the apparatus is proportional
to the Reynolds number. It is seen that the data shown in the
four curves of Fig. 44 all lic on a single curve. This proves not
so much the correctness of the similarity law, which does not
need experimental proof, but the exactitude of Bose’s measure-
ments.

With apology to the hydraulicists who may read this book,
I confess that I used to call hydraulics ““the science of variable

2 L os-ab L il most constants appearing in sl 14
1ne trutn is tnat most constants appcdr 1115 111 tne oida

constants.
hydraulics books are simply functions of the Reynolds number.
After the concept of thc Reynolds number was adopted by the
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hydraulicists and the chemical engineers, the whole subject of
flow in pipes and channels became much clearer. However, it
was a long time before the full importance of Reynolds’ ideas
penetrated the minds of physicists, chemists, and engineers. In
American hydraulic literature of the twenties an equivalent of
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I said that the Reynolds number works like black magic, be-
cause in engineering one can sometimes use a similarity rule and
other general methods for the reduction of parameters without
much of an understanding of the phenomena.

This reminds me that a great engineer, Charles F. (*Boss’”)
Kettering, then director of research for General Motors, once told
me when I had lunch with him and the late Robert A. Millikan,
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Fig. 35. Nondimensional representation of Bose’s experimental results plotted in

Fig. 4. Same notation as in Fig. §4; p and u are density and viscosity of liquids,

respectively. (From data of Th. von Karmén, in Physikalische Zeitschrift, 12 [1g11],
283-284.)

8t

www.ASEC.ir



AERODYNAMICS

“] must confess that thermodynamics was always black magic
for me!”

This is an interesting observation by a great practical engineer,
who certainly had to apply the entropy law and other thermo-
dynamic rules in his work!

Laminar and Turbulent Flow

One curious feature that can be seen in Fig. 33 is the sudden
decrease in the drag coefficient of the circular cylinder in the
neighborhood of the Reynolds number 2 X 10% This phenome-
non of sudden change in the value of the drag is not confined
to circular cylinders but occurs also with spheres and other bodies;
it is characteristic for many other phenomena in fluid mechanics.
The physical reason for such a sudden change is the existence of
two fundamentally different types of flow, which we call laminar
and turbulent flows.

In 1883 Reynolds carried out a series of experiments on flow
in tubes. One of his experiments is shown diagrammatically in
Fig. 36. A long glass tube was connected to a reservoir, and the
flow through the tube was observed by introducing a dye at the
entrance of the tube. At small velocities the dye forms a thin,

Fig. 36. Diagrammatic sketch of Reynolds’ experiment.
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straight thread parallel to the axis of the tube, indicating that
flow is steady and orderly in nature. This type of flow we call a
laminar flow. If the velocity is increased by small steps, one ob-
serves at a certain velocity a sudden change in the character of
the flow; the thread becomes violently agitated, and the dye
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s over the whole tub
laminar type to one of an oscillatory or, rather, irregular charac-
ter, which we call turbulent flow. Turbulent flow is much more
common in nature and in engineering devices than laminar flow.
For example, the flow of water in rivers and the motion of the
air in the atmosphere are practically always turbulent. The fluid
motions with which the engineer is concerned are turbulent in
most cases.

To be sure, Reynolds was not the first to observe and analyze
the phenomenon of turbulent flow. Indeed, the German engineer,
Gotthilf Heinrich Ludwig Hagen (1797-1884) (Ref. 19), recog-
nized the transition from laminar to turbulent flow in 1854.
Reynolds, however, carried out a systematic series of experiments
and demonstrated that the transition from laminar to turbulent
flow occurs when the parameter we call the Reynolds number
exceeds a certain critical value. The Reynolds number in this
case may be defined by taking the diameter of the tube and the
mean velocity over the cross section of the tube as the character-
istic length and velocity, respectively.

Now, the characteristic feature of turbulent flow is that it is
quite irregular. However, genuinely regular motion is exceptional
in nature. Even laminar flow appears regular only to the human
observer who looks at the molecular motion from so far away
that he can see only the average motion. Similarly, the velocity
that the practical engineer measures in the turbulent flow of a
river is actually the mean value of a velocity component, because
his measuring instrument is not sufficiently refined to follow the
irregular motion. If he had finer measuring instruments, he could
observe the instantaneous values of the velocity. The presence of
the irregular motion radically changes the flow pattern, especially
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the energy losses. But the irregular motion is so complicated that
it is generally hopeless to follow all individual details of the flow.
Moreover, what we are interested in for practical purposes are
mostly average quantities. The real mechanism of turbulent mo-
tion must be treated by statistical methods.
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view: the so-called Eulerian method considers pressure and velocity
at a fixed point, and the Lagrangian method describes the fate of
an individual particle.

From the viewpoint of the Eulerian method, turbulent flow is
described by the fluctuations of velocity and pressure at a given
point. Fig. 37 shows oscillograph records of velocity as a function
of the time. The records were made by a hot-wire anemometer,
in which a platinum wire of very small diameter is exposed to
the flow at a fixed point and is heated electrically. When the
velocity of flow changes, the temperature of the wire and there-
fore its electric resistance change; this change can be recorded by
suitable instruments. The development of the hot-wire tech-
nique is due to several experimental aerodynamicists; recently
Hugh L. Dryden and his collaborators at the National Bureau
of Standards made significant contributions (Ref. 20). The upper
record of Fig. 37 represents a typical case of turbulent flow. The
lower record is obtained by placing the wire in an alternating
vortex street, such as described in a preceding section of this
chapter. We clearly observe the very irregular character of the
turbulent fluctuation, which contains all possible frequencies,
while one definite frequency prevails in the vortex street. The
difference between the flow due to vortex shedding and the
turbulent motion can be illustrated by a column of soldiers
marching in step and a crowd of people moving in a haphazard
fashion.

If we look at the turbulent flow from the Lagrangian viewpoint
—for example, by adding small particles that will move with the
fluid, thus making the flow visible—we observe a continuous
intermingling of particles instead of fluctuation at a fixed point.
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In Reynolds’ experiment described above, we assume that the
dye particles are carried by the fluid elements. This is why the
dye spreads over the whole tube when the flow changes from
laminar to turbulent. The turbulent intexmingling of fluid par-
ticles also changes the velocity distribution in the tube in such a
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are reduced, and thus the distribution is more nearly uniform
when the flow is turbulent than when it is laminar.

Fig. 38 shows the velocity distributions for the two types of
flow, as given by measurement and drawn for the same amount
of fluid flowing per second. Since the velocity near the center is
more uniform, the velocity gradient at the wall must be con-
siderably greater when the flow is turbulent. Consequently, the
friction loss in a turbulent flow is much greater than it is in a
laminar flow carrying the same quantity of fluid.

- - _ﬂ_. - - —

Fig. 38. Velocity distributions of flow in a tube, laminar
(left) and turbulent (right).

Turbulence is not confined to the flow in tubes but also occurs,
for example, in the flow just adjacent to the surface of a body
moving in a fluid, the so-called boundary layer. The flow in this
laver may be laminar at low Reynolds numbers and may be-
come turbulent when the Reynolds number exceeds a certain
critical value. This change has a favorable consequence because
the violent intermingling of particles enables the turbulent layer
to stick to the surface better than does the laminar layer, which
contains less kinetic energy and leaves the surface earlier. At low
Reynolds numbers, especially in the range where the drag co-
efficicnt of a sphere or cylinder is almost constant and has the
larger value, the boundary layer is laminar and the early separa-
tion of the flow creates a broad wake filled by vortices. Then,
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at a certain higher Reynolds number, the flow in the boundary
layer becomes turbulent, the separation is delaved, and the size
of the wake is reduced. This explains the relatively sudden re-
duction of the drag coefficient at a certain Reynolds number
(Fig. 33), mentioned above.

sphere drag was
first observed in a rather amusing way. Prandt in Géttingen
and Eiffel in Paris measured the drag of the sphere; Prandil ob-
tained a value for the drag coefficient which was more than twice
that obtained by Eiffel.

They exchanged information, and one of the young engineers
in Prandtl’s laboratory said, “Oh, M. Eiffel forgot a factor of
two. He calculated the coefhicient referred to pl? not 1pl/2”

This remark somehow reached Paris and the elderly M. Eiffel
became very angry. He then measured the drag for a wider
range of Reynolds numbers—the maximum Reynolds number
attainable was a little higher in his wind tunnel than Prandtl’s—
and discovered that a sudden decrease in the drag coefficient oc-
curred beyond a certain Reynolds number (Ref. 21). Thus he
discovered the dependence of the phenomenon on the Reynolds
number.

But Eiffel did not find the physical reason for the sudden
change. It was Prandtl (Ref. 22) who gave the explanation men-
tioned above. He also added an interesting cxperiment: a fine
wire ring was put around a sphere a short distance in front of
the separation point of the laminar layer. The wire disturbed the
flow in the boundary layer, so that the transition to turbulence,
and hence the sudden drop of drag, occurred at a smaller Reyn-
olds number. Paradoxically, - therefore, although the wire ring
was an additional obstacle, the total drag was reduced by the
presence of the wire because laminar separation was prevented.

Skin Friction and Boundary Layer

The problem of skin friction acting on flat plates moving par-

allel to their surface through a fluid was of primary interest for
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shipbuilders. In the years 1793-1798 Mark Beaufoy in England
carried out systematic experiments on fluid resistance in general

and on the magnitude of skin [riction in particular. The results
of his experiments were published by his son, Henry Beaufoy, in
1834 (Ref. 23). Many years later, in 1872, William Froude pub-
lished the results of a series of important experiments on the sub-
ject. Froude’s second report (Ref. 24), dated December 1872, is
a remarkable document, because, I believe, it was the first time
that an author clearly stated that the frictional force must have
its counterpart in the loss of momentum of the fluid which has
passed along the surface of the plate. This is the fundamental
idea of every modern theory of skin friction. However, the theo-
retical analysis of the phenomenon based on the equations of
motion of fluids started with Prandtl’s paper presented to the
Third International Congress of Mathematicians held in 1go4 in
Heidelberg. Prandtl showed in his paper (Ref. 25) that for a
fluid of small viscosity, such as air or water, the viscosity will
substantially affect the flow only in a thin layer adjacent to the
surface. Outside this layer, viscosity can be neglected and the
flow can be described to a high degree of accuracy by the me-
chanics of nonviscous fluids.

Prandtl called the thin layer near the wall affected by viscosity
the “Grenzschicht”: the term boundary layer is used in English
terminology. He showed that the small thickness of the boundary
layer permits essential simplifications in the equations of motion
of a viscous fluid, so that the problem of frictional drag becomes
accessible to mathematical analysis. Thus from 19o4 on the
boundary-layer theory became an important part of fluid me-
chanics. Some German scientists propose to publish an anniver-
sary volume ““Fifty Years of Boundary Layer Theory” in this
year of 1954.

Prandtl first obtained the solution for a flat plate exposed to
e that +h
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flow in the boundary layer is laminar, the thickness of the layer
increases with the square root of the distance from the leading
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edge of the plate, and the friction acting per unit area decreases
inversely proportional to the square root of the same distance.
Summing up the frictional force over the flat plate, we can ob-
tain the total skin friction.

In a uniform external flow, the similarity of the velocity dis-
permits the
reduction of the problem to the solution of an ordinary differen-
tial equation, 1.e., of a differential equation with one variable.
If the flow outside the boundary layer is not uniform, as in the
case of a wing section, the problem requires in general the solu-
tion of a partial differential equation—a differential equation
with two or three variables.

In the past fifty years a great number of scientific publications
have been devoted to the solution of boundary-layer equations
and to the comparison of theory and experiments. I proposed a
simplified method in 1921 in one of my papers (Ref. 26); I used
an integral relation describing the development of the boundary
layer as a whole, instead of trying to solve the partial differential
equation. This method has been employed extensively by many
authors. Its usefulness was first demonstrated by Karl Pohlhausen
(Ref. 27).

Boundary-layer theory also enables us to calculate the point
where the flow separates from the surface, because—as Prandtl
pointed out—the separation of flow occurs mainly because the
kinetic energy is dissipated by viscosity within the layer. As I
have already mentioned, the wake drag is caused by flow separa-
tion. It is therefore important to predict the conditions in which
separation will occur. Before the introduction of the boundary-
layer theory into fluid mechanics, separation could be predicted
only if the flow passed over a sharp edge. The boundary-layer
theory opens the possibility of predicting the separation of flow
in the case of a surface without sharp edges, at least in cases
when the external flow is known and the flow in the boundary
layer is laminar.

In practical application, however, complications arise due to
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the transition from laminar to turbulent flow. As we have seen
earlier, the flow in the boundary layer can be laminar or turbu-
lent, just as in pipes or other conduits. As we mentioned, the
transition from laminar to turbulent flow in the boundary layer
causes the decrease in the drag coefficient of blunt bodies like
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boundary layer of wing sections (called airfoil sections or, briefly,
airfoils) may also change from laminar to turbulent. We know
that a turbulent boundary layer can better resist the tendency of
separation than a laminar boundary layer; it sticks to the surface
better. We also know that the stall of an airfoil, i.e., the reaching
of maximum lift at a given flight speed, is caused by flow separa-
tion. Hence the transition from laminar to turbulent flow may be
beneficial in permitting airfoils to reach higher lift, just as it
proved to be beneficial in reducing the wake drag of blunt bodies.
This phenomenon was discussed in a paper published in 1935 by
Clark B. Millikan and me (Ref. 28). Fig. 39, which is taken
from that paper, illustrates the ““play” between the points of
transition and separation. However, as far as skin friction is con-
cerned, turbulence in the boundary layer always works against
the designer in that it increases the magnitude of the friction.

Here we touch upon a problem that is one of the most impor-
tant and most difficult subjects in modern fluid mechanics—the
problem of the turbulent flow and of the turbulent boundary
layer in particular. The real theorv of the mechanism of turbu-
lence is a very complicated problem of statistical mechanics. As
in statistical mechanics in general, we are dealing with a dis-
orderly or chaotic motion. It is almost hopeless to follow the fates
of individual particles, but we may obtain results concerning
statistical mean values.

Many scientists are working on statistical turbulence theories.
Interesting results have been obtained concerning a simple type
of turbulence, which is uniform and isotropic in space (i.e., the
statistical mean values are independent of location and orienta-
tion in space). Unfortunately, this type of turbulence cannot
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Fig. 39. Alternative flows around an airfoil section. When the Reynolds number
is small, the transition point is downstream of the separation point, § (upper)
and an early separation occurs. An increase in the Reynolds number causes the
transition point, 7, to be Iccated upstream (lower); the boundary layer at the
laminar separation point, S, is already turbulent and so clings to the airfoil
surface. (From Th. von Kirmén and C. B. Millikan, in Fournal of Applied Me-
chanics, 2 {1935), A—22, by permission of the American Society of Mechanical
Engineers.)

transfer forces from fluid layer to fluid layer; therefore the sta-
tistical theory so far cannot be applied to turbulent friction.
Nevertheless, the progress of the statistical theory is extremely
promising, in spite of the difficulties from both the mathematical
and physical points of view.

After the introduction of the fundamental concept of isotropic
turbulence and initiation of its study by Sir Geoffrey I. Taylor
of Cambridge University in 1935 (Ref. 29), Leslie Howarth and
I made some significant advances (Ref. 30). Later, important
new ideas were put forth independently by the Russian mathe-
matician Andrei N. Kolmogoroff (Ref. 31) and the German
physicist Werner Heisenberg (Ref. 32). I was in Moscow in 1945
and talked over turbulence problems with Kolmogoroff. He told
me about the progress he had made in the statistical mechanics

91

www.ASEC.ir



AERODYNAMICS

of turbulence; he published a paper on the subject in 1941, but
it was not known until much later in Western Europe.

In the same year I went to London and repeated Kolmogoroff’s
story to my friend, Sir Geoffrey, who said, “That is exactly the
same thing that Heisenberg tried to explain to me three months
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And we later found out—especially after George K. Batchelor
investigated the two theories closely (Ref. 33)—that Kolmogo-
roftf’s reasoning and results were almost identical with those of
Heisenberg. One man conceived the idea in Russia and the other
one in Germany, both during the time in which the two countries
were involved in a war for life or death. Heisenberg later gave a
broader formulation to his theory, but the whole subject is still
in flux. Among other scientists working on the problem are
Chia-Chiao Lin of Cambridge, Massachusetts, and Subrah-
manyan Chandrasckhar in Chicago.

It is important, however, to mention that useful semiempirical
solutions for the computation of turbulent friction were found
prior to the strictly statistical theory. To be sure, these semi-
empirical theories are also based on statistical concepts. Prandtl
(Ref. 34) tried to transfer the concept of the mean free path used
in the kinetic theory of gases into the theory of turbulence. In
the kinetic theory of gases, the mean free path can be calculated,
because the particles are well defined as molecules, whereas the
fluid particles which intermingle in turbulent flow are somewhat
ambiguous. However, Prandtl successfully introduced a certain
path of convection or mixing length into a simplified picture of
the turbulent mixing; in principle he left the magnitude of- the
mixing length to be determined by experiment.

I considered the problem from a somewhat more general point
of view and introduced the assumption that the flow patterns of
the turbulent flow in the nelghborhoods of any two points in the
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(Ref. 35). It was then possible to correlate the mixing length
with the velocity distribution by solving a specific differential
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equation. The velocity distribution calculated in this way agrees
very well with measurements and is usually called the logarithmic
velocity distribution, because the velocity is expressed by a logarith-
mic function of the distance from the surface. The same formula
was obtained 1ndepcndcntly by Prandtl (Ref. 36), when he
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from the surface.

There still remained the problem of establishing the connec-
tion between the fully developed turbulent region and the so-
called laminar sublayer, which always exists next to a solid surface,
where the surface prevents any turbulent fluctuation. Prior to
the discovery of the logarithmic velocity distribution, several
empirical distribution laws were tried, but one always had to
change them when the range of experimental evidence was ex-
tended.

The formulation of the logarithmic law was the end result of
a long struggle to obtain correlation between theoretical ideas
and experimental evidence. Prandtl’s school and my own worked
on the problem in a spirit of co-operative rivalry. The logarith-
mic velocity distribution was first found for flow between two
walls. But it could be applied without difficulty to the calculation
of the skin friction of a flat plate which is covered by a turbulent
boundary layer. Fig. 40 shows a plot of the nondimensional co-
efficient of skin friction as a function of the Reynolds number,
which is referred to the length of the flat plate and the relative
undisturbed velocity outside the boundary layer. The plot con-
tains, in addition to the theoretically predicted values, a number
of curves obtained experimentally during the past several decades.
The agreement between theory and experiment is excellent, al-
though it should be noted that one universal constant which is
left open in the theory has been adjusted. In the same figure the
coefficient of laminar friction is also shown, i.e., the friction
coefficient of a flat plate covered by a laminar boundary layer.
In the range of its validity the curve calculated by Prandtl’s
theory of laminar boundary laver agrees very well with experi-
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ment. C. B. Millikan and N. B. Moore have extended the laminar
and turbulent theories, respectively, to slender bodies of revolu-
tion and calculated the skin friction for certain airship models

(Ref. 7).

D.OO‘![ I I ] T |i [ T r
Cf i ’ | !
7~ THEGAY o TURSULLNT [ 1 .
\ . soumbAly LAYER {rafman 1930}
C.006 s :
\ ! '
N\
. S |
LS
\ wil SEL SBLRCER 1921 ! |
0.008— .- ; 1
l ]
0204 ‘ - =~
- . T ™~
_-‘.;:-
w FROVCE 18712, FROLOL NAT TANK 1915, CIBI0ON 185
0co3 — - S
Sreras res-n— T~ T :.\q__.(::f“"' 1929}
0002 i t '"“\--.q e —
! ] \
i b -\\-‘
I
LAMINAR THEGRY
o oo !»A_n.fn, - BLASIUS 1$04)
I
i |
' | | '
104 2 * fTod ‘ ¥ T 2 w? i 10?

R

Fig. 40. The skin-friction coefficient Cy of smooth, flat plates as a function of
the Reynolds number R. (From Th. von Ké&rman, in Journal of %he Aeronautical
Sciences, 1 (1934), 13, by permission of the Institute of the Aeronautical Sciences.)

Fig. 40 includes some experimental curves that fit neither the
laminar nor the turbulent curve. These correspond to cases where
the boundary layer begins in a laminar state and becomes turbu-
lent behind a certain point. We do not know enough about
the mechanism of transition from laminar to turbulent flow to
calculate theoretically how the transition occurs. What we can
predict with some certainty is the condition in which a disturbance
in the laminar boundary layer may increase with time. Small
disturbances may either decay or grow with time; if they grow,
we say that the laminar boundary layer is unstable.

The theory of instability of laminar flow, which has the aim
of predicting the value of the Reynolds number at which dis-
turbances no longer decay is a mathematical problem which has
intrigued a number of prominent mathematicians. Sommerfeld
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(Ref. 38) first attacked it; Heisenberg (Ref. 39) worked on it;
and Tollmien (Ref. 40) and Lin (Ref. 41) finally completed the
calculations. At first the validity of the theory was questioned,
because there was no experimental evidence to support the theo-
retical predictions. But later it was made clear by Dryden,
Schubauer. and Skram
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rue phenomenon
had been masked by the turbulence existing in the wind-tunnel
stream. These investigators succeeded in creating a wind stream
of extremely low turbulence where they could show that the pre-
dictions of the stability theory are correct and that the appear-
ance of instability agrees with the commencement of the transition
from laminar to turbulent flow.

The problem of the gradual development of transition is, how-
ever, much more complicated, and I think there is still much
work to be done before we fully understand its mechanism. For
example, almost all theories and experiments are concerned with
a smooth body surface, while the surface of an actual airplane is
more or less irregular and rough. When roughness exists on the
surface, the disturbance caused by the roughness may cause a
premature transition to turbulence. This problem was studied
experimentally by Tani and Hama (Ref. 43) in Japan during
the last war.

The influence of roughness also enters into the problem of
turbulent skin friction. It appears that roughness has no signifi-
cant effect on skin friction when the Reynolds number is below
a certain limit. The physical reason is that below this Reynolds
number the thickness of the laminar sublayer exceeds the height
of the irregularities of the surface—called roughness elements—
and these elements are not able to produce additional turbulence
in the main stream. With increasing Reynolds number, the
laminar sublayer becomes thinner and thinner, so that the rough-
ness elements emerge and begin to influence the main flow.
When the height of the roughness elements 1s large in comparison
with the thickness of the laminar sublayer, the skin friction is
apparently given by the total frontal drag of these elements. In
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this case every protuberance can be considered as a small blunt
body, and its individual drag is proportional to the square of the
velocity of the fluid stream which strikes it. This causes the co-
efficient of the total friction to depend only on the degree of
roughness and to be independent of the Reynolds number of the

rnlata
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As I mentioned earlier, turbulence works against the aero-
nautical engineer as far as skin friction is concerned. Hence the
question arises whether there is any possibility of ‘“‘cheating
nature” and maintaining the boundary layer in a laminar state
up to a higher-than-usual Reynolds number. In the period im-
mediately before and during the last war, much attention was
given to laminar-floww airfoils. These airfoils are so designed that
the lowest pressure on the surface occurs as far back as possible.
The reason for this design is the fact that the stability of the
laminar boundary layer generally increases when the external
flow is accelerated, i.e., in a flow with a pressure drop, while
the stability decreases when the flow is directed against increasing
pressure. Considerable reduction in skin friction is obtained by
extending the laminar regime in this way, provided that the
surface is sufficiently smooth.

I remember that, during our return voyage from the Volta
Congress for High Speed Flight in 1935, Eastman N. Jacobs told
me that in his opinion no really important progress originating
from aerodynamic theory could any longer be expected. Jacobs
is one of the most creative aerodynamicists in this country, and
at that time he was working for the N.A.C.A. It is a remarkable
coincidence that, a few years later, he himself most effectively
contributed to the development of laminar-flow airfoils (Ref. 44).
The success of the design of the airfoil was first announced by
the late George W. Lewis, then director of research of the N.A.C.-
A., in his Wilbur Wright Memorial Lecture to the Royal Aero-
nautical Society in 1939, but details of the principle of the design
were not given for reasons of national security (Ref. 45). The
same problem was also pursued independently in England and
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in Japan, and, curiously enough, the principle of the design was
first published in 1940 in a report of the Aeronautical Research
Institute, Tokyo Imperial University (Ref. 46).

It is also possible to postpone the transition to turbulence by
prcventing the growth of the boundary laver beyond a certain
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of the laminar boundary layer usually preserves the stability
much longer than when the layer grows naturally. Boundary-
layer control can be effected by removing air from the boundary
layer through slots or holes in the wing surface, or through a
porous wing surface. Such methods have been studied exten-
sively at laboratory scale and also on a few flying models. The
possibility exists that by application of the principles of boundary-
layer control airplanes may be designed in the future with much
lower drag than they now have. I do not know whether this will
really be accomplished, but it would be a great victory for aero-
dynamic theory.
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CHAPTER IV

THE subject matter of this chapter is somewhat broader than
the title. “Supersonic Aerodynamics,” indicates. The chapter
deals with the fundamental principles of the aerodynamics of
compressible fluids in both supersonic and subsonic flow.

Propagation of Pressure Change: Sound Velocity

Until now we have considered air as a practically incom-
pressible fluid. At moderate speeds the changes of air density and
temperature caused by motion are almost negligible. But if we
go to higher speeds, the changes of density and temperature
caused by compression or expansion of the air become very
noticeable. Thus the subject of this chapter is not purely aero-
dynamics; we may call it aerothermodynamics, 1.e., a combination
of two sciences, fluid mechanics and thermodynamics. The ex-
pression aerothermodynamics was first introduced by General
G. Arturo Crocco in 1931 (Ref. 1). Later many such words were
formed; e.g., in the next chapter, we shall talk about a combina-
tion of aerodynamics and elasticity called aeroelasticity. We also
speak sometimes of aeroelectronics, but practical engineers call the
corresponding branch of engineering avionics.

The essential difference between an incompressible fluid and
a compressible fluid is that in the former the propagation of
pressure 1s instantancous, whereas in the latter the propagation
takes place with finite velocity. For example, if we strike the sur-
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face of an incompressible fluid, the effect perceived at a great
distance is, of course, less than that at a smaller distance, but it
reaches even an infinite distance in no time; whereas in a com-
pressible fluid the effect propagates at a finite velocity. The
velocity of propagation of a very small pressurc change 1s called

nm e f Aicht 4+~ A~
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with sound? Many laymen ask the question: “Why is it difficult
to fly faster than sound?’ Really it is not a question of flying
faster than sound; it is a question of flying faster than any pressure
effect produced in the air can be propagated.

The first man who calculated the propagation of pressure or
sound in air was Newton (Ref. 2). His finding was that the
square of the speed of propagation is equal to the ratio of the
pressure change to the corresponding density change involved in
the process. He did not write this result in mathematical form,
in spite of the fact that he-—perhaps he and G. W. Leibniz—
invented calculus; he did not use our present symbols. He did,
however, calculate the ratio of pressure to density changes, i.e.,
in modern language the derivative, dp/dp, where we suppose that
the pressure, p, is a function of the density, p. Taking p propor-
tional to p, he obtained for the velocity of sound in air a value of
979 feet per second. He compared this result with the velocity of
sound measured on an artillery field near London by observa-
tion of the time difference between the flash and the sound of a
gun fired some distance away. One can assume that the velocity
of light is infinite in comparison with that of sound. From the
observed time difference Newton concluded that the sound
velocity was 1,142 feet per second, which is a correct figure for
it at the temperature usually prevailing at sea level.

Newton of course noticed the difference in figures obtained
from theory and experiment. Then he followed a method familiar
to graduate students, namely, he looked for some excuse to justify
the discrepancy. First he remarked that the air was not clean;
it always contains some suspended dust particles. He thought
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that the dust particles would account for a deviation of about 10
percent. Then he thought that moisture content would also act
against compression. So he said these two effects together might
be responsible for the 147 percent difference. Even very great men
sometimes indulge in wishful thinking, Wthh 1s perhaps a short-

this time thermodynamics was not known as a science.

Pierre Simon, Marquis de Laplace (1794-182%) (Ref. 3) cor-
rected Newton’s computation. The fundamental fact which
changed the result is the following: The pressure, p, of a so-called
ideal gas is proportional to its density, p, in an isothermal process,

e., if the change takes place at constant temperature. On the
other hand, if a gas is compressed 1n a so-called adiabatic process,
it gets hotter, and if it expands, it gets cooler. We call the process
adiabatic if there is no possibility for heat conduction from out-
side into the gas or vice versa. In this case, we can show that
the pressure, p, is proportional to a certain power of the density,
p’, where 7 is always larger than one and depends on the num-
ber of atoms in the molecule—or, more exactly, on the number
of degrees of freedom in which a molecule can store energy.
For air, ¥ 1s equal to about 1.4, so that the derivative, dp/dp, 1s
1.4 times as great as it would be if p were proportional to p as
Newton assumed. The process involved in sound propagation
can be considered, with good approximation, to be adiabatic
because the heat conduction is negligible.

Laplace introduced the corresponding correction in Newton’s
formula for the sound velocity so that the square of the sound
velocity became 1.4 times larger than was computed by Newton.
This correction explained the discrepancy of about 17 percent
between Newton’s theory and experiment.

If we consider gas to be made up of particles, i.e. molccules,

we find that the vcloc:1ty sound is of the same order of magni-

tude as the velocity of the n‘oleculc‘:s. As a matter of fact, accoru-

ing to the kinetic theory of gases the mean value of the square
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of the velocity of molecules is equal to 3p/p. The square of the
sound velocity is yp/p; hence molecular velocity and sound
velocity are in the ratio v/3/¥, or 1.46 if v = 1.4.

The absolute temperature of a gas is proportional to the kinetic
encrgy of the molecules, and therefore, for a givcn gas, propor-
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molecules. Consequently, the square of the sound velocity is also
proportional to the absolute temperature of the gas. The sound
velocity increases when the temperature increases and decreases
when the temperature decreases.

The ratio between the velocity of a body moving through the
air and the velocity of sound in the air 1s called the Mach number
of the motion. Also the ratio between the velocity of a stream
and the sound velocity is called the Mach number of the stream.
If the velocity 1s variable in the field, we call the ratio between
the velocity at an arbitrary point and the sound velocity corre-
sponding to the temperature prevailing at that point the /ocal
Mach number.

Ernst Mach (1838-1916) was a professor of physics in Vienna,
who, after teaching physics several years, took over the chair of
philosophy. Some people say that his influence in the field of
philosophy, especially the theory of knowledge, was perhaps
greater than his influence on the progress of physics. At the be-
ginning of this century, his philosophical tenets had considerable
effect on scientific thinking.

The concept of the ratio between the velocity of motion and
the velocity of sound was used for a long time 1n scientific litera-
ture before the designation Mach number was introduced by
Jacob Ackeret in Zurich, just as the term Reynolds number was
introduced by Sommerfeld many years after Reynolds’ investiga-
tions. Ackeret felt the desirability for a special name for this
characteristic parameter and chose the name of Mach, who had
made pioneer studies of supersonic motion—though not, to be
sure, of supersonic flight (Ref. 4).

Mach was also the first man who used the so-called schlieren
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method (method of “‘striae’”) for visual observation of supersonic
flow. This method is suitable for detecting variations of density,
or more exactly, density gradients produced in a gas. It was
invented by August Tépler in 1864 (Ref. 5) in order to test the
homogeneity of glass in optical instruments.

Fig. 41 shows schemati

for the visual investigation of gas flows. We produce a beam of

| GAS
FLOW !
R
R
|
v |

r

Fig. 41. Optical system for schlieren observation.

parallel light which traverses, perpendicular to the flow direction,
the gas flow to be investigated. By means of a lens system we
then concentrate the light at a focal point. A camera or a screen
for observation is placed behind the focus. Let us now assume
that we place a knife edge ncar the focus. If the knife edge is
outside the focus, the field on the screen 1s bright. If the knife
edge covers the focus, the field becomes dark. Let us arrange the
knife edge so that it just touches the focus and assume that the
density of the air, due to a variable velocity distribution in the
gas flow, is nonuniform. In any region where there 1s a density
gradient perpendicular to the direction of the knife edge, the de-
gree of illumination will indicate the gradient, because the density
gradient causes a deflection of the light passing through the gas.
If the deflection occurs toward the knife edge, the latter will
catch a portion of the light; if the deflection is away from the
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knife edge, the intensity of the light will increase. By changing
the direction of the knife edge, one is able to discover the density
gradient in any arbitrarily chosen direction. This method 1s es-
pecially suitable for tracing regions in which the density varies
rapidly, as, for example, where the air traverses shock fronts.

Propagation of Signals from a Moving Source

Let us now consider the laws of propagation of a pressure im-
pulse produced in a compressible fluid. If the fluid is at rest, the
pressure impulse propagates with sound velocity uniformly in all
directions, so that the surface which the effect of the impulse
reaches at any instant 1s spherical. If we assume, however, that
the source of the impulse is placed in a uniform stream, the im-
pulse will be carried by the stream and at the same time it will
propagate relative to the stream with sound velocity. Conse-
quently, the resulting propagation is no longer symmetrical; it 1s
faster in the directio.: of the strcam and slower against the stream.
If the stream velocity 15 equal to the sound velocity, it appears
that the effect of the impulse cannot reach every point in the
space but is restricted to the half-space bounded by a plane
perpendicular to the flow direction. The source of impulse 1s no
longer able to send signals upstream. If the velocity of the stream
1s supersonic, 1.e., superior to the velocity of sound, the effect of
the impulse is restricted to a cone whose vertex s the source of
the impulse and whose vertex angle decreases from go° (which
corresponds to Mach number equal to 1) to smaller and smaller
values as the Mach number of the stream increases. In fact, the
trigonometric sine of the half-vertex angle 1s equal to the recipro-
cal of the Mach number. The cone which separates the “zone of
zone of forbidden

i<

action” from the “zone of silence” or the
signals” 1s called the Mach cone, and its half-vertex angle 1s called
the Mach angle. Since the trigonometric sine of 30° is equal to
one half, the Mach angle 30° corresponds to “Mach 2,” 1L.e., the
stream velocity equals twice the sound velocity.

If a source of pressure impulses travels through the air, the
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conditions are analogous. In Fig. 42(a) is shown the source at
rest at the point O. The concentric circles give the location of
the pressure effects due to impulses emitted by the source at equi-
distant past instants. In Fig. 42(b) the source is assumed to move

1T T

by

| _MACH CONE

ZONE OF
SILENCE

u u
ZONE OF
SILENCE (FORBIDDEN)
FORBIDDEN SIGNALS
( SIGNALS )
ZONE OF ACTION )
(c) (d)

Fig. 42. Point source moving in compressibie fluid. (z) Stationary source.

() Source moving at half the speed of sound. (¢) Source moving at the speed

of sound. () Source moving at twice the speed of sound. (From Th. von Kéar-

mén, in Journal of the Aeronauiical Sciences, 14 [1947], 374, by permission of the
Institute of the Aeronautical Sciences.)

with subsonic velocity. The small circles indicate the positions of
the source at past instants of emission, and the large circles con-
tain the points reached simultaneously by the pressure effects.
It is seen that the circles are no longer concentric. Fig. 42(c)
and (d) are corresponding diagrams for sources moving with sonic
and supersonic speeds respectively. In the case of a projectile
moving with supersonic speed through air at rest we may assume
that the main disturbance originates from its vertex. <Iherefore
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the effect of the disturbance is restricted to the interior of the
Mach cone that moves with the projectile; ahead of the cone the
air remains undisturbed. One sces the fundamental differcnce be-
tween the subsonic and the supersonic motion of a bodv. In
subsonic motion. the effcct of the disturbance. although decreas-
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ing the body. whereas in supersonic motion the action is restricted
to the inside of the Mach cone. If a projectile goes over vour
head at a supersonic speed, vou hear it onhy when it is far bevond
vou. The saying 1s that nobody ever heard the bullet that killed
him—because, before he could perceive the sound. the bullet
had already hit him!

Two-cimensional Linearized TWing Theory

Let us now consider the flow pattern produced by a wing
moving at a supersonic speed. First we confine ourselves to wings
with infinite span. i.c.. to the two-dimensional flow problem. If
a wing section is thin, we can consider the disturbances caused
by the wing 0 be small. We thercfore assumc that, in the first
approximation, the flow pattern produced by the wing can be
built up by supcrposition of small disturbances emanating from
the points of the wing system. The theory of lift and drag for
such a wing was first developed by Ackeret (Ref. 6).

Let us consider for simplicity’s sake a wing whose section is
made up ol straight-line segments as shown in Fig. 44. Assume
that a uniform and parallel supersonie stream of Mach number
M strikes the first etement of the wing surface, whose inclination
to the stream direction is 0,. There are two effects due to the
clement at L: the flow direction of the stream is changed by the
angle 0,, and a pressure rise of amount p; 15 produced. The
problem is to calculate the magnitude of p; if the Mach number
and the deflection O, arc known.

We know from the general considerations above that the effects
of the impulse p, are felt only behind the Mach line LL’. One
can show that in two-dimensional flow every fluid particle passing
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Fig. 445 A svmmetrical airfoil section made up of straight-line segments

placed with zero angle of attack in a supersonic stream.

through L1’ suffers the same deflection, ©,, and is subjected to
the same pressure rise, p;. Now we apply the theorem of the
equality of pressure force and momentum change. Since the
pressure jump occurs perpendicular to the Mach line LL', the
pressure rise, p;, can influence only the velocity component, Uy,
whereas the component tangential to LL’ must be unchanged.
According to the momentum equation, the rclation between the
pressure rise and the velocity change AUy is p1 = pUy AL,
where p denotes the density of the air.

With the aid of Fig. 43, we can express Uy and AU in terms
of ©; and the angle of inclination 8 of the Mach line LL’. We
remember that sin 8 = 1/M, so that for a thin wing § is always
large compared to O, (except for very large Mach numbers, for

which a different theory has to be developed.) Hence, in the
Tven F;n- a0 frr fl"\ n° + !8 — 8N

luagl\f\lli 16- 1*3 e} i \J[}'

can be replaced by cos 8 = v/M? — 1/M, and one arrives at
the result
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In this formula sin ©, was replaced by ©;, which is again cor-
rect for small angles.

Let us repeat this calculation at a point farther back along
the wing section, assuming the wing to be symmetric and to be
placed at zero angle of attack in the stream, as shown in Fig. 43.
If the angle of inclination of the succeeding element PQ is O,
the pressure r he = plO,// M — 1.
Since O, is smaller than O,, p, i1s smaller than p;. We see that
the air is accelerated by passing through the Mach line PP/, iLe.,

it expands and experiences a decrease of pressure equal to

pU%O, — Oy)
M2 —

P — P =

In this way the pressure rise rclative to ambient pressure de-
creases as we proceed downstream. It is proportional to the angle
of inclination of the surface element and remains positive until
we reach the element whose inclination is zero. If we proceed
farther, the angle of inclination becomes negative and the pres-
sure falls below the ambient pressure of the stream.

The conclusion is not changed when we increase indefinitely
the number of straight-line segments composing the wing surface,
1.e., for a wing section with a smooth surface, as shown in Fig. 44.
The pressure is constant along the Mach line emanating from a cer-
tain point on the surface and has the value po + pU0// M2 — 1,
where O is the angle of inclination of the tangent at that point to
the stream direction and p, denotes the ambient pressure. Hence
the pressure acting on the front part of the wing is higher and
the pressure acting on the rear part is lower than the ambient
pressure. The pressure difference between front and rear parts
evidently produces a drag. This is a new source of drag, which
is additional to the drag components mentioned in Chapter III.

We remember that, at least according to the theory of incom-
pressible nonviscous fluids, the pressures at the front and rear
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Fig. 44. A symmetrical airfoil section placed with zero angle of attack in a

supersonic stream of compressible fluid (/¢ft) and in a stream of incompressible

fluid (right). Lower diagrams show the distributions of pressure along the airfoil
surface.

parts of a streamlined section balance each other (Fig. 44), as
predicted by D’Alembert’s theorem. Evidently this theorem does
not apply to supersonic flow. For low speeds we usually use a
wing section with a blunt nose; the main requirement of stream-
lining is the sharp trailing edge. For supersonic speeds the blunt
nose is rather disadvantageous because of the large angle of in-
clination that it involves; the sharp trailing edge does not help
much because we cannot avoid negative pressure at the rear
portion of the section. The essential requirement for supersonic
wing sections is a small thickness ratio, i.e., a small value for
the ratio between the maximum thickness and the chord length.

We may ask the physical reason for the fact that in a super-
sonic speed range, even if we neglect skin friction and avoid flow
separation, the moving body experiences a drag which has no
parallel in subsonic motion. We have seen that, whereas in
subsonic motion a pressure change propagates freely in all direc-
tions, in supersonic motion the bulk of the action is restricted
to the Mach line and in the general three-dimensional case to

P PR (R ol P WV P M AL 1. N U N o
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pression and expansion waves that move with it. This phenome-
non reminds the observer of a speedboat when it proceeds with a
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velocity higher than the velocity of the surface waves and there-
fore carries with it the waves that it produces. The work that
must be done to create and carry these waves is a large part of
the total resistance of the boat. With this analogy in mind, we
call supersonic drag wave drag. The theoretical explanations of
both phenomena are based on the same concept. However. when
the speedboat goes “on the step,” a great part of the wave dis-
appears. Unfortunately, an airplane cannot go ‘“on the step”
into the fourth dimension. Some people believe that we only
have to get past the sound velocity and everything will be all
right. That is, of course, not true. ,
We now apply the same rcasoning to an inclined flat plate, in
order to study the laws of the lift produced by a thin wing sec-
tion. The conclusion is that positive pressure is produced at the

lower surface and negative pressure at the upper (Fig. 45). The

I
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Iig. 45. Pressure distribution around an inclined flat plate in a supersonic

stream of compressible fluid (left) and in a strcam of incompressible fluid
(right). p denotes the density, U the velocity, and M the Mach number of
1~ o
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amounts ol the pressure change are +pl*a/A/M® — 1 and
—pl%a/A/M? — 1, respectively, where « is the angle of at-
tack. The lift acting on a wing arca equal to S is thcrefore

2ol 2aS/A/M? — 1 and the lift coefficient (€, dehned as
(Lift) + %pl™S, becomes equal to ga/A/M? — 1. According
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to this formula, for example, C; is equal to 4o when M is v/2
or 1.41, and equal to 1.41a when M is 3. The lift coefficient

decreases with increasing Mach number. This is also true for
the drag coefhicient.

|
n infAnite 10 f th
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Fig. 46. Lift coefhicient of a
flat plate at angle of attack
«, as a function of the Mach
number A, according to the
linearized theory.

result is caused by the fact that the simplified theory based on
the assumption of infinitely small disturbances, which we call the
linearized theory, does not hold for the speed range near the
sound specd. As a matter of fact, a linearized wing theory can
also be worked out for subsonic flight, in the range of moderately
high speeds in which the approximation of incompressible fluids
no longer holds, so that the so-called compressibility eftfects have
to be taken into account. For this speed range, we find that the
lift coefficient 1s also a function of Mach number. Prandtl (Ref.
7} and Glauert (Ref. 8) proposed a correction for such speeds.
According to their correction formula the lift coefficient for flight
at Mach number M is equal to 2wa/A/1 — AM?, where 27a is
the lift coefhcient of a flat plate for incompressible fluids (M — o).
It is seen that this theory also fails if A approaches unity, i.e,
if we come to nearly sonic flight from below. H. S. Tsien and I
(Ref. g) proposed a somewhat further-reaching correction for
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compressibility effects on wings, but our method also fails to
work when we come near sonic flight or, more precisely, when the
local velocity at some point of the wing surface becomes equal or
superior to sonic velocity—or, as we say, the local Mach number

comes rather involved. Experimentation, for example in wind
tunnels, also becomes difficult.

We call the speed range just below and just above the sonic
speed—Mach number nearly equal to 1—the transonic range.
Dryden and I invented the word transonic. We had found that
a word was nceded to denote the critical speed range of which
we were talking. We could not agree whether it should be written
with one s or two. Dryden was logical and wanted two s's. I
thought it wasn’t necessary always to be logical in aeronautics,
so I wrote it with one 5. I introduced the term in this form in a
report to the Air Force. I am not sure whether the general who
read it knew what it meant, but his answer contained the word,
so it seemed to be officially accepted.

Before discussing the transonic problem, I would like to say
a few words about the linearized theory as applied to three-
dimensional flows and also about the effect of finite pressure
changes.

T hree-dimensional Linearized Theory

As we have seen in Chapter II, wing theory has to deal with
two-dimensional problems of wings with infinite span, and with
three-dimensional problems of wings with finite span. The same
two classes of problems also occur in supersonic wing theory.
Ackeret’s solution given above is a solution for the two-dimen-
sional problem in linearized form, i.e., under the assumption
that the velocities produced by the presence of the wing section
are small in comparison with the flight velocity. Further approxi-
mations will be mentioned in the next section. In treating three-
dimensional problems, most investigators have used linearized
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theory. With this approximate method, an extensive amount of
theoretical information has been gathered, especially in the last
ten years, concerning the theory of lift distribution and the calcu-
lation of the induced drag and wave drag for various shapes of

supersonic wings. This work has been greatly assisted by the fact
that the threao r'llmnn ;nno] nrahlam Af cteadsr ciinerennics oy ~an
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be reduced to that of two-dimensional wave propagation.

The latter problem was very well known before the advent of
supersonic flight. Mathematicians and theoretical physicists had
done a very good job in this field, so that methods were readily
available for the new aerodynamic applications. The analogy
with wave propagation in two dimensions is not restricted to
wings but also applies to supersonic flow around slender bodies.
As a matter of fact, one method well known in the theory of
wave propagation, the so-called method of sources, was used in
a work of mine, done jointly with Norton B. Moore in 1932, for
the calculation of the drag of slender bodies, like projectiles,
moving with supersonic speed (Ref. 10). This work appeared
before the bulk of papers dealing with three-dimensional super-
sonic wing theory.

In 1945 a group of American scientists were engaged in col-
lecting German papers and documents produced during the war.
The list of German papers was translated into English by an
American sergeant. One of my collaborators found, in the list
of papers on aerodynamics, one entitled ““Resistance of Under-
nourished Bodies.”” This was the sergeant’s rendering of the Ger-
man translation of my paper on “Resistance of Slender Bodies.”

Among several methods used successfully for the solution of
linearized equations of steady supersonic motion I want to men-
tion that of conical flow, proposed first by Adolf Busemann in 1942
(Ref. 11). This method tries to build up practically important
flow patterns by the superposition of elementary conical flows.
1[1(: 1uuuamema1 Cdsc€ O1 4 COHiC&L IIOW 1S tne now aluuud da
circular cone. By solving this relatively simple flow pattern, one
finds that in the case of supersonic flow the velocity components
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are constant along any straight line emanating from the vertex
of the cone. In general we call a flow conical if it fulfills this con-
dition. By the superposition of such flows, many apparently
complicated problems can be solved.

Shock Wave

It was mentioned that the linearized theory of supersonic flow
deals only with very small perturbations of a parallel stream and
therefore leads to a continuous velocity and pressure field. How-
ever, actual flow often behaves differently, and for large pressure
changes we need better approximations. It we observe, for ex-
ample, the supersonic flow past a circular cone, like the “ogive”
of a projectile, by optical methods, e.g., by the schlieren method
described earlier in this chapter, we see that density changes of
considerable magnitude occur abruptly across some surfaces in
the flow. We call such a surface a stationary shock wave. The origin
of this terminology is as follows: We mentioned before that a
very small pressure change propagates with sound velocity; how-
ever, if we produce a large pressure rise at a point or in a small
volume, as in an explosion, the speed of the resulting pressure
wave is essentially higher than the velocity of sound, and when
the wave passes any point the pressure rises abruptly from the
ambient pressure to a rather large value. This phenomenon is
called a shock wave, or more exactly a progressing shock wave.

The German mathematician G. F. Bernhard Riemann (1826-
1866) (Ref. 12) was the first who tried to calculate the relations
between the states of gas before and after a shock wave, but he
made a mistake, later corrected by W. J. M. Rankine, the British
engineer already mentioned in Chapter III (Ref. 13), and the
famous French ballistician Pierre Henry Hugoniot (1851-1887%)
(Ref. 14), independently. Riemann thought that the change
would be isentropic, hence that the entropy would remain un-
changed through the shock wave. This is not correct. The total
energy content {enthalpy) remains unchanged, whereas the en-
tropy always increases through a shock wave. After Rankine and

118

www.ASEC.ir



SUPERSONIC AERODYNAMICS

Hugoniot, shock waves were studied further by a number of
scientists. The science of shock waves is very important, not only
in aerodynamics, but also in ballistics and in the theory of ex-
plosions, detonations, and maybe also in cosmogony. It has
really become a separate branch of physical science. If we ob-
. oh
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shock wave appears to be at rest and the air to pass through it.
In this case we speak of a stationary shock wave. The velocity
of the stream before the shock wave must be supersonic, because
the shock wave propagates through air at rest at a velocity
greater than sound velocity. Upon transition through the shock
wave, velocity, pressure, density, and temperature undergo sud-
den changes. When the velocity of the oncoming stream is normal
to the shock wave, the velocity behind the shock wave becomes
subsonic; the direction of the flow is unchanged. If the velocity
of the oncoming stream is not normal to the shock wave, the
velocity component parallel to the shock wave remains unchanged
through the wave front. The velocity component normal to the
shock wave changes, however, from supersonic to subsonic magni-
tude, so that the stream is deflected. I should also note an im-
portant theorem discovered by the French mathematician Jacques
Hadamard (Ref. 15). According to his theorem, a vortex-free
flow ahead of a shock wave can remain vortex-free after passing
through the shock wave only when the wave is straight. If the
shock wave-is curved, it produces vorticity. This is a fact which
makes the analysis of motion behind a shock wave rather com-
plicated.

Let us consider again the case of a two-dimensional wing in a
supersonic stream. Instead of a Mach line at which the air
undergoes an infinitesimally small pressure rise, as in our former
linearized theory, we now find, according to more exact theory,
a stationary shock wave, i.e., a surface of discontinuity at which

JEPIpE RS Ao Clde e mcar i
undergo sudden changes. We say the theory is “more exact” be-
cause the linearized theory does not reveal such discontinuous
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changes. However, if we refine the theory still further, taking
into account the viscosity and especially the heat conduction of
the air, we find that the change may be abrupt but not dis-
continuous. This is also verified by observation. The shock wave
seen in the schlieren picture has, in general, a small but finite
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molecules is large, the thickness of the shock wave can be fairly
large.

If we observe the behavior of the flow past an airfoil for in-

Fig. 47. Detached shock wave of a wedge. Mach number 1.32. The details of

the flow field are made visible by the use of an interferometer. Light and dark

fringes indicate surfaces of equal air density. (Courtesy of Guggenheim Aecro-
nautics Laboratory, California Institute of Technology.)
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creasing Mach numbers of the stream, we find that the shock
wave attached to the leading edge does not appear immediately
after the stream becomes supersonic. First we have a so-called
detached shock wawve (Fig. 47) at a great distance ahead of the
airfoil; the shock wave comes nearer and nearer to the airfoil
when the Mach numb :
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¥Y LIL AL Lliv AYAdL L1l LiuUlLlpoe

sV
)
9]

value of the Mach number the shock wave reaches the leading
edge and beyond that we find it attached to the leading edge
(Fig. 48). (If the leading edge is rounded, the shock wave al-

Fig. 48. Attached shock wave of a wedge. Mach number 1.45. The optical
technique is the same as in Fig. 47. (Courtesy of Guggenheim Acronautics
Laboratory, California Institute of Technology.)
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ways remains detached, but for increasing Mach numbers it is
located nearer and nearer to the leading edge.) With a further
increasc in Mach number the angle of inclination of the attached
shock wave decreases and for very large Mach numbers ap-
proaches a constant value which is proportional to the half-vertex
.2 times the ha
very high Mach numbers the flow picture is similar to that which
Newton imagined in his analysis of air resistance (sec Chapter I).
According to Newton’s assumption, the air procecds undeflected
until it reaches the surface of the body and then is deflected in
the direction of the surface. The diffcrence between Newton’s
flow picture and that we find at very high Mach numbers, called
the hvpersonic-speed range, is that the deflection occurs, not at the
surfacc of the body, but at a surface ncar to it. This surface
appcars clearly in Fig. 49. One also finds that in this range the
pressure produced at a surface becomes approximately propor-
tional to the square of the angle, as follows from Newton’s analy-

Fig. 49. Schlieren photograph of the attached shock wave of a cone, Mach num-
ber 5.9. (Courtesy of Guggenheim Aeronautics Laboratory, California Institute
of Technology.)
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sis, whereas for modcerate Mach numbers the pressure rise is pro-
portional to the angle itself.

We have seen that, according to Ackeret’s linearized theory,
the deflection of the stream at a concave corner produces a pres-
sure rise, whereas the deflection at a convex corner causes a
pressurc drop. If we study the same problem by means of the
more exact theory, we obtain an abrupt pressure rise through
the shock wave emanating from the concave corner (Fig. 50).

Odfﬁq Fig. 50. Flow past a concave

C\Dz‘\\\v corner produces a pressure

/ rise, which is achieved by a

/ shock wave emanating from
the corner.

What happens if the flow goes around a convex corner? Both

N W

theory and observation show that the air particles go around in
a curved path and that the pressure changes gradually from a
higher to a lower valuc (Fig. 51). From the point of view of

EXPANSION

Fig. 51. Flow around a convex
corner produces a pressure
drop, which is achieved by an
expansion wave. The pressure
changes gradually from a higher
to a lower value through the

expansion wave.

Aluid mechanics, it is interesting to observe that in supersonic flow
the fluid may go around a corner without infinite velocity or
separation of flow, whereas it is known that in the subsonic case
cither the velocity becomes infinite or the flow separates. To be
sure, this flow pattern is possible only when the angle of deflec-
tion is not too large. The flow pattern of Fig. 52 exhibits both
compression shocks and expansion waves.
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Fig. 52. Photograph of a conical-headed projectile in flight. Mach number 1.72.

A compression shock wave appears at the nose and an expansion wave at the

shoulder of the projectile. (Courtesy Ballistics Research Laboratory, Aberdeen
Proving Ground, Maryland.)

The fact that there is no ‘‘negative shock™ in nature, 1.e., that
If the pressure changes discontinuously the change must involve a
positive pressure rise, can be proved by the principles of thermo-
dynamics. A sudden expansion with a sudden temperature drop
would mean that the entropy of the gas would decrease without
removing heat and without doing external work. This 1s exactly
what is forbidden by the Second L.aw of Thermodynamics.

I used to illustrate this law to my students by exhibiting two
containers in thermic contact, one containing beer, the other tea,
both at rcom temperature. It would certainly be desirable to
have the beer cooler and the tea warmer, a process which 1s
perfectly compatible with the law of conservation of energy, i.e.,
the First Law of Thermodynamics. Unfortunately, the Second
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Law makes it wishful thinking, because it would require transfer
of heat from a low temperature level to a higher temperature
level without the use of mechanical work.

In scientific terms, the impossibility of such a process can be
expressed by saying that thé entropy would decrease. It can be

.
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stream, heat would have to be transferred from the lower tem-
perature region behind the expansion wave to the region of
higher temperature, against the stream. Thus the expansion
shock conflicts with the Second Law of Thermodynamics. The
compression shock requires only heat transfer from higher to
lower temperature and makes the entropy increase in the gas,
as was shown by Rankine and Hugoniot.

Transonic Flight

I want to give here a rather short discussion of the transonic
speed range, namely the speed range that extends from just below
to just above the sound speed. I want especially to consider the
aerodynamics of wings near M = 1.

I have already shown in Fig. 46 the lift coeflicient of a wing
section, according to the linearized theory, in the subsonic and
supersonic regions. The lift coeflicient becomes infinite if the
Mach number approaches 1 from either the subsonic or the
supersonic side. This effect does not occur in nature. Instead of
increasing to infinity, the lift coefficient reaches a maximum value
and then drops, just as in the case of the stall due to increasing
angle of attack. As a matter of fact, both phenomena—the de-
crease of lift coefficient beyond a certain angle of attack and
beyond a certain Mach number—are caused by separation of the
flow. The question is, What causes the separation in the case of
a flow approaching sound velocity?

In order to understand the process, let us consider some flow
pictures. Fig. 53 shows the flow pattern of normal subsonic flow
around a wing. There is no separation, except a slight tendency
to separation near the trailing edge, which may be just a thicken-
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Fig. 53. Schlieren picture of the flow pattern of normal subsonic flow. Mach

number 0.829. Separation is almost, if not entirely, absent. If present, the

separation is slight or manifests itself as a boundary layer of somewhat increased

thickness. (Courtesy Guggenheim Aecronautics Laboratory, California Institute
of Technology.)

ing of the boundary layer causing a small wake drag. The flow
1s first accelerated along the upper surface of the wing but does
not reach the value of the velocity of sound; after reaching a
maximum velocity at a certain point of the surface, the flow is
again decelerated.

Fig. 54 shows the flow pattern at a higher subsonic flight speed.
The main stream 1s still subsonic, but near the wing surface there
must be supersonic flow because otherwise the shock wave seen
there could not appear. Evidently, the flow near the surface (but
outside the boundary layer) is accelerated beyond the sound
speed. As the flow continues toward the trailing edge, 1t de-
celerates, and the transition to subsonic flow occurs by means of
a shock. The shock wave is limited in extent at both ends. In
the free stream it extends only to a certain distance from the
wing surface, since beyond that the flow is no longer supersonic.
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velocity decreases to zero at the surface. We notice a slight in-
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Fig. 54. Schiieren picture of the flow pattern as in Fig. 53 but at a higher speed.

Mach number 0.860. A supersonic region is present, and the transition to sub-

sonic flow occurs by means of a shock wave. Definite increase in the thickness

of the boundary layer is noticeable, but there is no appreciable separation as

yet. (Courtesy Gyggenheim Aeronautics Laboratory, California Institute of
Technology.)

crease in the thickness of the boundary layer, probablv caused
by the fact that, owing to the presence of the shock wave, there
must be rather rapid increase of pressure along the surface and
the boundary layer has to work against pressure rise. We know
that exactly this phenomenon, the deceleration of the fluid in
the boundary layer by excessive pressure rise, causes flow sepa-
ration.

In Fig. 55, which refers to a slightly higher Mach number, we
see the separation accomplished. By analogy with another case
of flow separation we call this effect the shock stall. Fig. 55 refers
to a case in which the boundary layer is laminar. If the boundary
layer is turbulent, it has somewhat more resistance to separation.
This mutual effect is known as shock-wave and boundary-layer
interaction. The pressure rise produced by a shock wave may
cause boundary-layer separation, which in turn reacts on the
formation of the shock wave. The problem was first investigated
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Fig. 55. Schlicren picture of the flow pattern as in Iig. 54 but at a higher speed.

Mach number o.g14. Separation of the flow has been accomplished. The

boundary layer is laminar in this case. (Courtesy Guggenheim Aeronautics
Laboratory, California Institute of Technology.)

by Ackeret, Feldmann, and Rott (Ref. 16) in Zurich and by
Liepmann (Ref. 17) at the California Institute of Technology.

The shock stall has two effects on the aerodynamic character-
istics of the wing: a decrease of lift and an excessive increase of
drag.

Figs. 56 and 57 show schematically the behavior of the lift
and drag coefficients of a wing section at a constant angle of
attack as functions of the Mach number through the transonic
range.

In Chapters II and III we have seen that aerodynamic science

Fig. 56. Lift coefficient C, /\/\
of a wing section at a con- %
stant angle of attack through

the transonic range as a
function of the Mach num-

. L 1
ber M. 0 l 2 3 4
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/
Fig. 57. Drag coefficient Cp
of a wing section at a con-
stant angle of attack through
the transonic range as a

function of the Mach num-

0 l 2 3 4 ber A.

has succeeded in developing the theory of lift and the theory of
drag for incompressible fluids, i.e., for fluid motion at low speeds.
These theories enable us to compute, at least to a sufficient ap-
proximation, the pressure distribution around the wing section
and, by means of the boundary-layer concept, the skin friction
acting on the wing surface. In the range of higher subsonic
speeds, before we reach the transonic range, the Prandtl-Glauert
and Kdrmdn-Tsien theories mentioned above permit reduction
of the problem of determining the approximate pressure dis-
tribution to that of an incompressible fluid. In the present chap-
ter we have seen that methods are available for computing the
lift and drag for supersonic speeds beyond the transonic range.
However, the situation is not so favorable in regard to the theory
of lift and drag in the transonic range. Solutions of the problem
are available only for certain singular cases, certain Mach num-
bers, and certain wing sections. In general, however, the solution
of the flow equations requires extremely cumbersome calcula-
tions with no certainty that the results are exact.

In this situation, a similarity consideration, which I proposed
and called the transonic similarity rule, does good service, since it
allows the transfer of experimental results from one case to an-
other (Ref. 18). Suppose we have two thin wing sections that are
geometrically similar in the sense that they would become identi-
cal if the scale of thickness were changed. For example, we

might compare two wing sections, one with 3 percent and the
other with 6 percent maximum thickness, the distribution of the
ordinates expressed in terms of the maximum ordinate being the
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same. We find from the consideration of the flow equations that,
so far as two-dimensional flow is concerned, the flow pattern
must be similar if the ratio #/4/[1 — M?| has the same value,
where ¢ 1s the maximum thickness ratio and M is the Mach
number. Hence, if we have a measurement of pressure dlSt[‘lbu—
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tions as functions of the Mach number, we are able to compute
the corresponding quantities for the other similar wing section
with a different thickness ratio. The predictions from this simi-
larity rule agree very well with experiments. It is also found
that the similarity rule 1s approximately correct even when rela-
tively weak shock waves appear in the flow.

It is interesting to know that both the Prandtl-Glauert theory
for subsonic speeds and the Ackeret theory for supersonic speeds
yield analogous similarity rules for their respective speed ranges.
In two-dimensional flow, the corresponding rule would state that
the flows are similar when the ratio {//1 — M? or t/\/M? — 1
remains constant. The first ratio is a real number for values of
M less than unity and the second for M greater than unity.

The appearance of shock waves and the phenomenon of shock
stall cause significant changes in the behavior of an airplane
flying through the transonic speed range, which, with some
simplifications, can be summarized as follows:!

a) Unexpected changes can occur in the trim of the airplane.
Suppose, for example, that the wing suffers shock stall before the
tail does. (This is very possible, since both the thickness ratio
and the angle of attack of the wing may be greater than the
corresponding parameters of the tail surface.) Evidently, the
sudden decrease of the lift at the wing will cause a strong nose-
heavy moment. Or, because of the appearance of a shock wave

at the upper surface of the wing, the point of action of the re-

1 The author is indebted to W. Lavern Howland of the Lockheed Aircraft
Corporation for this concise formulation of the manifold problems of transonic

flight.
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sulting lift may be suddenly displaced, disturbing the relative
location of lift and gravity forces.

#) Various severe disturbances can occur in the maneuver-
ability of the aircraft. Sometimes the pilot finds that his elevator
or rudder is utterly ineffective;-he moves the stick or the rudder

3 3 Thj
pedals, but the airplane fails to respond. This ca
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by the shock stalling of the fixed horizontal or vertical surfaces,
in the presence of which the control surface moves in the wake
and has no effect. At another time the pilot may find that the
control surface is “frozen”; apparently the aerodynamic hinge
moment has become so large that he is unable to overpower it.
No complete explanation is known for this phenomenon; perhaps
it has to do with the location of the shock wave. Finally some
pilots say that they observe a shift of the control surfaces at a
certain Mach number on a given airplane: the rudder, elevator,
or aileron may suddenly leave its neutral position and jump to a
deflected position without any action of the pilot.

¢) Vibrations of the tail, or even of the whole aircraft, are
often observed. Presumably in the mixed subsonic-supersonic
flow over the wing the positions of the shock waves are not well
defined; they may move back and forth. It has also been ob-
served that, when shock waves are produced on both the upper
and lower surfaces of the wing or tail, they may move in op-
posite phase, which apparently makes the wake oscillate, and
this oscillation is transferred to the wing or tail.

When such difficulties first appeared in flight, they were de-
scribed as “‘compressibility troubles.”

I remember a conference in 1941 when the Lockheed Aircraft
Corporation built one of the first airplanes that reached Mach
numbers greater than o.7. The airplane became nose-heavy dur-
ing a dive, and the oscillation originating in the tail unit shook
the whole airplane with great violence. A number of ‘“aero-
dynamic doctors” were called for consultation and diagnosis of
the disease. Some said it was ordinary wing flutter, a kind of
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oscillation that we will discuss in Chapter V. I was one of the
“doctors,” and I voted for shock stall—and I think I was correct.
Indeed, subsequent investigation by the Lockheed Corporation
showed that the maximum lift coefficient that could be reached
without tail oscillation decreased with increasing Mach number.

o hau
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actual flight.

I well remember this period when designers were rather frantic
because of the unexpected difficulties of transonic flight. They
thought the troubles indicated a failure in aerodynamic theory.
I thought we had to expect compressibility effects, since the air
has always been compressible. It is rather remarkable that we
could go as far as we did with a theory based on the assumption
that the air can be treated as an incompressible fluid.

From the practical point of view of.minimizing transonic
troubles, an increase in the size of the control surfaces or improve-
ment in their efficacy by special devices might be recommended.
Also an increase in the force available to the pilot for the opera-
tion of the control surfaces, by means of so-called booster controls,
is often necessary. Furthermore, excess propulsive power is de-
sirable to permit quick passage through critical speed ranges; it
has been noticed, indeed, that some of the dangerous effects are
reduced to a slight jerk or lurch if the airplane passes quickly
through the transonic range.

Sweptback Wings

There is an effective method to postpone to higher Mach num-
bers the troubles connected with transonic flight. Everyone is
familiar with pictures showing airplanes having wings with sweep-
back, i.e., wings whose leading edges form a considerable angle
relative to the perpendicular to the flight direction. The basic
theoretical idea underlying the use of such wing planforms can
be described as follows: Assume that a wing with constant sec-
tion and infinite span moves through the air in a direction oblique
to its span. We may say that the motion of the wing is composed
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of a motion normal to the span and a sideslipping motion along
the span. If we neglect frictional forces, the latter part of the
motion should have no influence on the forces acting on the wing.
So we conclude that the flow pattern relative to the wing is de~
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for example, the sweepback angle is 45° the effective Mach num-
ber is about %0 percent of the flight Mach number, so that the
critical value of the latter, where transonic troubles appear,
would be raised about 40 percent.

Of course, things are not really so simple. First, in the case of
sweptback wings of finite span, the theory does not apply to the
center part or to the wing tips; secondly, friction and boundary
layer have disturbing cffects. Nevertheless, the rise of drag and
the change in trim usually connected with a Mach number ap-
proaching unity are postponed to higher Mach numbers. The
benefit in the increase of Mach number is about half of what
one would expect according to the simple theory sketched above.

The aerodvnamic propertics of sweptback wings were treated
by Busemann at the Volta Congress for High Speed Flight held
in Rome in 1935 (Ref. 19). I remember that, at the banquet of
the congress, General Crocco, the organizer of the congress and
a man of far-reaching vision, improvised a drawing of an airplane
on the back of the menu card. He called 1it, jokingly, Busemann’s
airplane; it had sweptback wings and tail, and even its propeller
blades were sweptback. Busemann, however, considered the be-
havior of sweptback wings only in supersonic flight and based
his computation of lift and drag on the linearized theory. It is
said that Albert Betz first suggested that sweepback might be
useful in postponing the transonic effects to higher flight Mach
numbers. The suggestion was followed up by wind-tunnel re-
search men and airplanc designers. In this country the theory
of sweepback was independently discovered in 1945 by Robert
T. Jones (Ref. 20).

When I went to Germany with a group of scientists and engi-
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neers in 1945, we found, in the deserted Volkenrode Laboratory
near Braunschweig, wind-tunnel models of an airplane with
sweptback wings and pertinent high-Mach-number wind-tunnel
data. George Schairer, eminent chief of the technical staff of the
Boeing Aircraft Company, was a member of my group. He had
heard of Robert Jones’s ideas about sweepback, but the Volken-
rode data were the first experimental results he had seen. It is
related that Schairer wired back to his home office: “‘Stop the
bomber design’ and that this led to the birth of the present B-47
airplane, the first bomber with sweptback wings in this country,

An intercsting version of a sweptback wing is the so-called
crescent wing, in which the sweepback angle varies along the
span of the wing. The sweepback angle is large in the center
part where the wing thickness is large and smaller at the outer
part of the wing where the wing is thinner.

The delta wing takes advantage of both a large sweepback
angle and a small thickness ratio. A small thickncss ratio at the
center part is preserved by the use of large chord lengths. Since
at high spced, transonic and supersonic, the unavoidable profile
drag is relatively large in comparison to induced drag, a small
aspect ratio is acceptable. The large chord allows relatively large
volume inside the wing, which can be used for the storage of fucl
or for other loads. Furthermore, onc important feature of the
delta planform is that the displacement of the center of pressure
by transition from subsonic to supersonic flight is smaller than
for conventional planforms. Most delta-wing airplanes have only
vertical stabilizers. The delta wing can be made longitudinally
stable without a horizontal stabilizer, and clevators and ailerons
can be arranged at the trailing edge of the wing.

Piercing the Sonic Barrier

At present the problem of “piercing the sonic barrier” appears
to be essentially one of propulsion. If cnough propulsive force is
available to overcome the drag increase occurring at and im-
mediately before the sonic barrier, so that the airplanc can pass
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quickly through the critical speed range, no specific difficulties
need be expected. Probably it should be easier to fly an airplane
in the supersonic speed range than in the transition range be-
tween subsonic and supersonic speed.

Thus the situation is somewhat analogous to that which
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were able to prove the possibility of powered flight because they
had a light engine with sufficient propulsive power. If we have
suitable engines, supersonic flight will be rather common. Until
just recently the piercing of the sonic barrier in level flight has
been accomplished only by the use of rather uneconomical propul-
sive devices, such as rockets and ramjets, with a very high fuel
consumption. Experimental airplanes like the X—1 and the Sky-
rocket have rockets which are good for only a few minutes’ flight
or use turbojets with afterburncrs, but at the moment of writing
there are few airplanes that can fly at supersonic speeds for half
an hour. If you read in the ncwspaper that an airplane “went
through the sonic barrier,” it often means that it did so by diving,
in which case gravity supplemented the inadequate propulsive
force.

‘There is a strange phenomenon connected with these diving
stunts which I want to mention. Assume that the airplane ap-
proaches an obscrver at subsonic speed, makes a dive reaching
supersonic speed, then recovers from the dive and continues in
flight at subsonic spced again. In such a case the observer on
the ground frequently hears two loud booming sounds, rather
closcly following one another: “Boom, boom!”’ Some scientists
have offered explanations of the origin of the double boom.
Ackeret in Zurieh (Ref. 21) and Maurice Roy in Paris (Ref. 22)
have both suggested that the booms are due to the piling up of
sound impulses—such as cngine noise—emitted during the
periods in which the airplane passed through the sonic specd.
If the airplanc is moving toward the observer, the noisc emitted
from the airplane will reach the observer in a shorter interval
than the interval in which it was emitted. Thus some piling up
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of the sound impulses always takes place, provided the sound
source moves toward the observer. However, if the sound source
moves at a speed near sound velocity, the piling up becomes in-
finitely intensified. This becomes evident if one considers that all
sound emitted from a source moving exactly with sound velocity

moment, namely, when the sound source arrived at the location
of the observer. The reason is that sound and sound source
would be travelling at the same speed. If the source moved for
a period of time with supersonic speed, the sequence of received
and emitted sound impulses would be reversed; the observer
would perceive signals emitted at a later time before he perceived
those emitted earlier. -

The process of the double boom, according’ to this theory, can
be illustrated by the diagram shown in Fig. 58. We assume that

D

DISTANCE

A

TIME

Fig, 58. Distance-time diagram of an airplane flying at
variable speed. The parallel lines with the angle of in-
clination @ indicate the propagation of sound.

the airplane moves straight toward the observer but at variable
speed. The curve AB shows the displacement of the airplane
as a function of the time. The angle of inclination of the tangent
to the curve indicates the instantancous speed of the airplane.
The parallel lines shown in the diagram indicate the propagation
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of sound; the angle of inclination, 6, of these lines corresponds
to sound velocity. The velocity of the airplane is first subsonic in
the region 4 to §,, then supersonic in the region S, to 5, and
finally subsonic again in the region §; to B. If the observer is
at an initial distance D, the points indicated on the horizontal
he sequence o i
ceived by him. We see that the noise emitted by the airplane
during its second passage through the sonic barrier (point §,)
reaches the observer earlier than the sound emitted during its
first passage (point .5)). At these two instants, the observer per-
ceives, in an infinitely small interval, the impulses emitted during
a finite period. Hence he hcars an explosionlike boom. Between
the two booms he perceives simultaneously three impulses emitted
at different times by the airplane.

Fig. 59 shows schematically the intensity of noise we may ex-
pect in this simplified case. It should be mentioned that the
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E Fig. 59. Schematic repre-
- sentation of noise intensity
wi received by the observer.
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piling up of sound impulses in the case of an approaching sound
source is the same as the process known as the Doppler effect; how-
ever, the description of the latter effect is usually restricted to the
change in pitch of the tone connected with the piling-up process.
It is difficult to calculate the intensity of the perceived noise,

since this depends on the mechanism of sound formation, which
is not well known. Also the process is complicated by the shape
of the trajectory, by possible echoes, and also by shock waves
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which occur on various parts of the airplane during the flight
and whose energy is transformed into sound waves after the air-
plane decelerates. Some recent papers on the subject attribute
the cntire phenomenon of the double—sometimes triple—boom
observed in supersonic dives to these shock waves.

'T‘l-\a r'\r-nl\]::m Af Craarcing tha cnnd haririar W oA 4] , §¢ -1
A Li tJl.ULJll.,J.].J. A"} l}l\.—lLllls LLIG. DUlllL, Ualll‘_l\ Ul Ll N

wall.”” seems to appeal to the imagination of the general public
(an English motion picture entitled ‘“Breaking the Sound Barrier”
gives some idea of the problems connected with flight through
Mach 1); pilots and engineers discuss the problem both seriously
and jokingly. The following ‘‘scientific report” of a transonic
flight shows a nice combination of technical knowledge and
poetic license (Ref. 23):

We were slipping smoothly through the air at 540 mph. I'd always
liked the little XP-AZ5601-NG because of her simple controls and that
Prandtl-Reynolds meter tucked away in the upper right corner of the
panel. T checked over the gages. Water, fuel, rpm., Carnot efficiency,
groundspeed, enthalpy. All OK. Course 270°. Combustion efficiency
normal at 29 percent. The good old turbojet was rumbling along as
smoothly as always and Tony’s teeth were barely clattering from the
17 buckets she’d thrown over Schenectady. Only a small stream of oil
was leaking from the engine. This was the life.

I knew the engine in my ship was good for more speed than we’d
ever tried. The weather was so fair, the sky so blue, the air so smooth,
I couldn’t resist letting her out a little. T inched the throttle forward a
notch. The regulator only hunted a trifle and everything was steady
after five minutes or so. 590 mph. I pushed the throttle again. Only
two nozzles clogged up. I pushed the small-slot cleaner. Open again.
640 mph. Smooth. The tailpipe was hardly buckled at all—there were
still several square inches open on one side. My fingers were itching on
the throttle and T pushed it again. Shc worked up to 6go mph., passing
through the shaft critical without breaking a single window in the ship.
It was getting warm in the cockpit so I gave the vortex refrigerator a
little more air. Mach o0.9! ’d never been that fast before. I could see
a little shocklet outside the port window so I adjusted the wing shape
and it disappeared.
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Tony was dozing now and I missed the smoke from his pipe. I couldn’t
resist letting the ship out another notch. In ten minutes flat we leveled
off at Mach 0.95. Back in the combustion chambers the total pressure
was falling like hell. This was the life! The Kirman indicator showed
red but I didn’t care. Tony’s candle was still burning. I knew gamma
was down but I didn’t give a damn.

I was dizzy with the thrill. Just a little more! T put my hand on
the throttle but just at that moment Tony stretched and his knee struck
my arm. The throttle jumped up a full ten degrees! Crash! The little

i udder .
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ed from stem to s
the panel by the terrific deceleration. We seemed to have struck a solid
brick wall! T could see the nose of the ship was crushed. I looked at the
Mach meter and froze. 1.00! My God, I thought in a flash, we’re on
the peak! If T don’t get her slowed down before she slips over, we’ll be
caught in the decreasing drag! I was too late. Mach 1.01! 1.02! 1.03!
1.04! 1.06! 1.09! 1.13! 1.18! I was desperate but Tony knew what to
do. In a flash he threw the engine into reverse! Hot air rushed into the
tailpipe, was compressed in the turbine, debusted in the chambers, ex-
panded out the compressor. Kerosene began flowing into the tanks.
The entropy meter swung full negative. Mach 1.20! 1.1g! 1.18! 1.17!
We were saved. She crept back, she inched back, as Tony and I prayed
the flow divider wouldn’t stick. 1.10! 1.08! 1.05! Crash! We had struck
the other side of the wall! Trapped! Not enough negative thrust to
break back through! As we cringed against the wall, the tail of the
little ship crushed, Tony shouted, “Fire the JATO units!” But they
were turned the wrong way! Tony thrust his arm out and swung them
forward, the Mach lines streaming from his fingers. I fired them! The
shock was stunning. We blacked out.

I came to as our gallant little ship, ragged from stem to stern, was
just passing through Mach zero. I pulled Tony out and we slumped to
the ground. The ship decelerated off to the east. A few seconds later
we heard the crash as she hit the other wall.

They never found a single screw. Tony took up basket weaving and
I went to M. L. T.2

2 Reproduced by permission of Aviation Week and the author, Prof. C. D. Fulton.
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CHAPTER V
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THE critical problems in achieving human flight were to de-
velop light engines for propulsion and efficient wing surfaces for
sustentation and to secure steady flight or stability of the airplane.
In this chapter we are concerned with the last-mentioned prob-
lem. Before we enter on the subject, it seems desirable to make
clear what we mean by the word stability. In relation to a flying
machine we are interested in the stability of a motion, but for
better understanding of the concept we begin with a discussion
of the stability of equilibrium.

Static Stability

Consider the simple case of a solid body suspended at a point
above its center of gravity like a pendulum. If we deflect the
body by a small angle, the moment of the gravity force tends to
restore it to its original position. We say that the equilibrium is
stable. On the other hand, it is clear that the pendulum is still
in equilibrium if it is inverted, so that its center of gravity is
directly above the point of suspension. In this case, however, the
equilibrium is unstable, because the moment resulting from a
small deflection tends to increase the deviation from the original
position.

For a ship floating on water, the stability of equilibrium is an
important condition which must be fulfilled. We know that a
ship is in equilibrium if the resultant of the lift due to buoyancy
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passes through the center of gravity. If we deflect the ship as
shown in Fig. 60, the lift acts through the center of gravity, B,
of the displaced water while

the gravity force acts through A

the center of gravity of the ship,

G. These two forces create a /\\ /

moment which tends to restore M ;

the ship to its original position /

of equilibrium, provided that ~——— G§ =
the center of gravity, G, is lo- / lg

cated below the point M, where
the vertical line through point
B intersects the centerline of
the ship. The point of inter- {
section, M, is called the meta- Fig. 60. Cross section of a deflected
cenler. If the center of gravity ship.

1s above the metacenter, the

equilibrium 1s unstable and the moment resulting from the de-
flection tends to increase the angle of inclination until the ship
is capsized.

This sort of consideration was applied to the stability of flight
by the early investigators. In those times only flight based on
aerostatistics, 1.e., balloon flight, had been actually accomplished;
thus the early investigators did not recognize the difference be-
tween the stability of equilibrium and the stability of motion.
We find, for example, that one flight enthusiast in a semiscientific
article suggested that the stability of the flying bird depends on
the form of its belly, whether its center of gravity is located below
the geometrical metacenter of the body. Other investigators,
however, based their studies of stability on sounder principles:
the airplane in steady flight was considered as a system acted
upon by gravity and lift forces. The gravity force acts at the cen-
ter of gravity of the airplane, while the lift force set up by a flat
wing surface acts at about a quarter of the chord back from the
leading edge. An obvious condition for equilibrium in steady
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flight is that the moments of the lift forces acting on the wing and
the tail, taken about the center of gravity of the airplane, must
balance, the larger force due to the wing being balanced by the
smaller force due to the tail, which has a larger moment arm.

This 1s the condition of trim. In order for the equilibrium to be

araler ot i
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the equilibrium is disturbed the moment resulting from the lift
acting on the wing and tail must be such that it tends to restore
the airplane to the original position. If this condition is fulfilled,
we say that the airplane is statically stable. Pénaud first (1841)
recognized the importance of the tail in securing static stability
(Ref. 1). In particular he found that a stabilizing moment can
be produced if the wing and tail form a so-called longitudinal
dihedral, so that the tail is set at an angle of attack smaller than
that of the wing. He demonstrated his conclusion with a small
model fitted with a propeller driven by rubber bands (Fig. 12,
p. 23).

If the wing surface is not flat but curved, the problem becomes
somewhat more complicated, because the lift, as mentioned be-
fore, has two components: one produced by the curvature, the
other produced by the angle of attack. If the wing has the shape
of a circular arc, the first component acts at the midpoint of the
chord, whereas the second component acts at the front quarter-
chord point. Consequently, the point of action of the total lift
acting on the wing itself moves as the angle of attack changes;
at zero angle of attack it is at the center of the chord; it moves
forward as the angle of attack increases. This eflect was known
to early investigators. They liked to express the stability condi-
tion in a form familiar to shipbuilders by generalizing the con-
cept of the metacenter.

To maintain static stability in the airplane, it is not absolutely
necessary to have a tail. The idea of a tailless airplane is attractive
since the tail represents additional weight and drag. The first
design of a tailless airplane dates back to 1910 when one was
proposed and built in England by J. W. Dunne. More recently
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the noted American airplane designer John K. Northrop became
interested in developing large airplancs of tailless design, which
he called “flying wings.” W. R. Secars and I helped him in the
study of the aerodynamic requirements for stability without the
use of a tail. It appears that the wing has to be given a consider-
able and twisted so
at the tips is smaller than necar the center. The twisted wing tips
serve more or less as a substitute for the tail. This application of
the sweepback for securing static stability of the wing 15 quite
diffcrent from its usc for delaying transonic difficulties, men-

tioned in Chapter IV.

armymmint n a
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Dynamic Stability

The complete problem of stability of an airplane is much more
complicated than the foregoing remarks might indicate, because
there is not only the question of static stability but also the more
difficult one of dynamic stability. The difference between static and
dynamic stability is best illustrated by an example. A top at
rest is obviously statically unstable in its upright position, but if
it is spun it certainly has a kind of stability. Another example of
dynamic stability which everybody knows is the bicycle. How
shall we define this kind of stability? Assume that a steady mo-
tion of a body, such as uniform rotation or rectilinear uniform
translation, is disturbed by a small amount. We call the body
dynamically stable if its subsequent motion remains within a
certain neighborhood of the original undisturbed motion. For
example, if we deflect the axis of the spinning top, the gyroscopic
force stabilizes the motion, so that the upper end of the top de-
scribes a small circle or a system of cycloids in the neighborhood
of its original position. A dynamically stable body does not neces-
sarily return to its original state of motion. But it is necessary
that the deviation from the original motion remain small pro-
vided the initial disturbance has been small. Evidently, without
spin the top would fall, so that its upper end would continuously
and rapidly move away from its original position.
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The mathematical theory of dynamical stability was first
formulated by the British mathematician, Edward J. Routh, in a
book published in 1877 (Ref. 2). The theorv was first applied to
the stability of airplanes by Bryan and Williams in 19o4 (Ref. 3).
In the same year General Crocco, then a young lieutenant, pub-
a paper (Ref. 4) on the stability of dirigibles. In this paper
he arrived at the remarkable result that the horizontal flight of
a dirigible can be dynamically stable when the ship is statically
unstable. In other words, it is possible that a dirigible model put
into a wind tunnel might show an unstable moment tending to
increase an initial angular deviation and that, nevertheless, if one
takes into account all the aerodynamic forces occurring in flight,
the airship might be dynamically stable. The practical conse-
quence of this result is that the size of the tail surfaces necessary
for stable flight is significantly smaller than static stability would
require.

Let us return to the general problem of the stability of an air-
plane. We consider the airplane as a rigid body with six degrees
of freedom—three components of linear displacement and three
of angular displacement. In the latter part of this chapter we
will consider the airplane as an elastic system, taking into ac-
count the deformation of its wing and control surfaces, but here
we Imagine it to be rigid. We use a co-ordinate system in which
the origin coincides with the center of gravity of the airplane
(Fig. 61). The x and z axes lie in the symmetry plane, and the
y axis is perpendicular to it. The x axis is in the direction of flight;
the z axis has been decided by higher authorities to be measured
positive downward, although I would prefer it positive upward.
Components of the velocity of the center of gravity in the direc-
tions of the co-ordinate axes are denoted by u, v, and w. We
call v a sideslip and w a plunge, although the latter may not be a
common expression. Components of angular displacement about
the co-ordinate axes are denoted by ¢, 6, and ¥; they are called
roll, pitch, and yaw, respectively. The positive direction of any
angular displacement is determined by the rule that it 1s clock-
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Fig. 61. Standard conventions for airplane stability
discussions.

wise if one looks in the positive direction of the axis of rotation.
The corresponding angular velocities are rolling velocity, p;
pitching velocity, ¢; and yawing velocity, r; respectively. The
linear forces acting in the directions of the co-ordinate axes are
X, ¥, and <; the corresponding moments about these axes are
L, M, and N, and are called rolling, pitching, and yawing moments,
respectively. The control surfaces used in general to produce
these moments are a:lerons for rolling, elevators for pitching, and
rudders for yawing. In the earliest airplanes warping of the wing
surface (gauchissement) was used instead of ailerons. The spoiler,
usually a kind of flap arranged on the wing’s upper surface or
emerging from a slot in the wing, “‘spoils’ the circulation and
therefore the lift. Spoilers applied alternately to the two half-
wings can replace the ailerons. Sometimes ailerons and elevators
are combined, especially in tailless airplanes. The combination
is called elevon, a term created at Northrop Aircraft, Inc. Elevons
work as an elevator when moved in the same sense, and as eilerons
when moved in the opposite sense.

Now the question 1s how to deal with all these motions. Co
plications arise from the fact that the six degrees of freedom are
not independent; certain motions are coupled. Suppose, for ex-
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ample, that a plunging motion is given to an airplane originally
in steady horizontal flight. Then the velocity of the air relative
to the airplane becomes inclined, i.e., the angle of attack is
changed. The change of the angle of attack produces a pitching
moment which sets up a pitching motion. One sees that there is
1 n plunging and pitching. We call a motion in
which every point of the airplane moves in a plane parallel to
the plane of symmetry a longitudinal motion and the corresponding
stability longitudinal stability. The longitudinal motion combines
the motion of the center of gravity in the plane of symmetry
with the pitching of the airplane about the center of gravity.
Because of the symmetry in the airplane’s geometry, the problem
of longitudinal stability can be separated from that of lateral

stability, swwhich comprises the motions of roll, vaw, and sideslip.

Longitudinal Stabilily

As mentioned before, the static stability of a conventional air-
plane is maintained by its tail. Although static stability is con-
cerned only with stability of equilibrium, it nevertheless plays an
important role since it can be shown that—as far as longitudinal
stability is concerned—practically all dynamically stable air-
planes are statically stable.

The analysis of the motion of stable airplanes shows two dis-
tinct types of longitudinal motion; one is a slow motion of long
period and the other a rapid motion of much shorter period.
The former involves deviations from a straight trajectory of the
center of gravity; the velocity of the center of gravity increases
while the plane is diving and decreases while it is climbing. The
angle of the wing relative to the trajectory is maintained almost
constant. This type of motion was first described by Joukowski in
1891 (Ref. 5), and later independently by Lanchester (Ref. 6),
both of whom I have already mentioned in connection with the
theory of lift. Joukowski’s contribution has been altogether over-
looked, and the phenomenon is usually known as Lanchester’s
phugoid motion. My Greek would suggest “phygoid,” but I am
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not quite sure about the term. At any rate, this strange word
seems to come from Lanchester’s misinterpretation. The Greek
word ¢evyew literally means ““to fly” in the sense of fleeing before
a menace and not flying as a bird. The various trajectories of
the phugoid motion are reproduced in Fig. 62. According to the

A=%

)
)

Fig. 62. Typical trajectories of the phugoid motion.

value of the parameter ., the trajectory becomes a horizontal
line, a wavy line, or a series of loops. The special case 4 = o
represents a wavy line with cusps, which is only possible for an
airplane with a vanishing moment of inertia, because the airplane
is required to turn 180° in no time at the cusp. Although the
phugoid is an 1dealized type of motion, it still gives a reasonably
correct picture of motions where the angle between the wing and
the trajectory is kept constant. The general motion can be thought
of as a pitching oscillation of short period superposed upon the
phugoid oscillation. As a matter of fact, we do not often notice
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these phugoid oscillations in modern airplanes; their period is so
long that they are either corrected by the pilot or obscured by
gusts in bumpy weather.

Even if we travel over the weather, as modern airplanes do,
we still do not often notice anythmg like a phugoid motion.

What we do no
Pitching oscillations of short period are usually very quickly
damped out, because the tail not only provides static stability
but also damping in pitch. Insufficient damping is not pleasant

for the passenger and makes the job of the gunner in military
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airplanes very difficult.

Difficulties are encountered when the airplane flies in the
transonic region or at high angles of attack. I have already men-
tioned in Chapter IV the transonic troubles caused by sudden
changes of pitching moment and the like. One difficulty occurring
at high angles of attack is the so-called buffeting, usually caused
by some vortex shedding, which may originate, for example, in
the junction of wing and fuselage. Separation of flow may be
caused because the junction forms a kind of diffuser—a tube of
increasing cross section. Since the separation often occurs peri-
odically, owing to vortex shedding, it may cause annoying oscilla-
tions. The trouble may be cured by a smooth fairing called a
fillet between the wing and fuselage. This device was developed
at the California Institute of Technology (Ref. ) and first em-
ployed on the Northrop Alpha airplane.

This is a typical example of developments made in the wind
tunnel and applied with success in practice. I worked on this
problem together with Clark Millikan and Arthur Klein. In 1932
I gave a lecture in Paris on up-to-date problems in aerodynamics
and mentioned the wing-fuselage fillet as an effective means of
preventing buffeting. It turned out that at that time the French
designers had the same trouble we had in the United States.
One of the prominent designers told me later that after my lec-
ture he tried a fillet right away on his new prototype and had
success. Thus in France the fillet was connected with my name
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and was called a “karman.” The French say an airplane has a
“big karman” or a “small karman.” I discovered this fact many
years later on the occasion of a trip to France; people in aero-
nautical circles who heard my name asked: “The man with the
fillet?”” The invention of the wing-fuselage fillet was in reality a
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Lateral Stabilily

A few words about the other motions—sideslip, rolling, and
yawing—are in order. These motions are coupled with each
other. For cxample, if a yawing motion is given to an airplane
originally in steady, straight flight, so that the left wing moves
forward and the right wing backward, then the relative air
velocity increases on the left wing and decreases on the right
wing. This results in an increasc in lift on the left wing and a
decrease in lift on the right wing, thus producing a rolling mo-
ment on the airplane. On the other hand, if a rolling motion 1s
given to the airplane, a yawing moment will be produced which
tends to move the descending wing forward. In this way the
rolling and yawing motions are coupled with each other. There
are also othcr couplings between the motions, so that they must
be considered together under the heading lateral stability.

The vertical fin furnishes static stability in yaw, also called
directional stability. It is very difficult to get sufficient directional
stability without such a surface somewhere, either on the wing
or on the tail. There is no static stability in roll, because there is
no rolling moment to right a banking airplane. What happens
is that the horizontal component of the inclined lift represents a
side force so that the airplane sideslips (Fig. 63). This coupling
of sideslip and roll makes possible the achievement of dynamic
stability in roll. It is achieved by giving to the two wing halves
a flat V' shape called lateral dikedral. The dihedral produces
a rolling moment which tends to restore the airplane to its nor-
mal flying position. This effect was known to early investigators,
for example, to Sir George Cayley. The function of the dihedral
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SIDE FORCE

LIFT /

Fig. 63. Production of side force on an airplane in a bank.

can be explained in the following wav: Let us consider, for
simplicity, a wing of rectangular form without sweepback. In
Fig. 64, A is a point on the leading edge of the right wing, AB
and BC are the components of velocity in the x and y directions,
respectively, and the planc ADE is the plane of the chord of the
right wing. If there is no sideslip, C coincides with B, and the
angle DAB is the angle of attack. In the presence of a sideslip,
BC, the angle of attack is represented by the angle EAC, which
1s greater than the original angle DAB. The opposite is true for

..

Z

Fig. 64. The explanation of the function of dihedral
when sideslip occurs. The angle § is the dihedral angle.
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points on the left wing. Therefore the wing gets more lift on the
side toward which it is slipping and loses lift on the opposite side,
thus creating a rolling moment to restore the wing to its original
position. There is a similar cffect due to sweepback of the wing,
but the rolling moment due to sweepback is proportional not
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the rolling moment due to dihedral is proportional to the dihedral
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angle and is independent of the angle of attack.
Now the lateral stability of an airplane is achieved by com-
promising the requirements of the static directional stability due
to the vertical fin and the dynamic stability due to the dihedral.
If the dihedral effect is too strong, the airplane, when banked,
rolls back too far, so that it sideslips the other way and overshoots
again, thus executing a motion called a “Dutch roll.” (The name
probably came from its resemblance to a skating figure that the
Dutch people used to perform.) This sort of motion is not a real
instability but is unpleasant and undesirable. It is actually harm-
ful in military airplanes, where accurate shooting is required. The
airplane designer is usually ashamed if his airplane dances in this
way. The other extremity, which occurs when the directional
stability is exaggerated, is a real instability. If the airplane gets
a small initial yaw to the right, for example, this is followed by
a bank to the right. This bank causes additional yaw, which is
followed by more bank, and the process continues. The motion
starts as a gentle spiral, which, if left to itself, gets continually
tighter and steeper. For this reason, the motion is called spiral
instability. Unfortunately the motion develops so gradually that
the pilot is often unaware that his airplane is deviating from
straight flight. In the air it is rather difficult to know whether the
flight path is straight or is a circle of large radius, without refer-
ence to the ground or to some other fixed direction such as may
be given by the stars or a gyroscopic instrument; the increase of
the resultant gravity due to the centrifugal force in the case of
flight in a large circle is so small that the pilot cannot sense it.
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Most airplanes have a certain degree of spiral instability. If the
instability is reasonably weak, it is usually corrected by the pilot;
only excessive instability should be avoided. Theoretically speak-
ing, most airplanes are not completely dynamically stable. In
other words they cannot be flown ““hands off”” indefinitely.

Tn
41

@]

of an airplane, two aspects of the subject must be introduced
that were not mentioned before. First, the effect of an initial
disturbance depends essentially on whether or not the control
surfaces deflect during the subsequent motion. It is evident that
two extreme assumptions can be made, namely, that the controls
are fixed in their initial positions and that they are completely
free to move on their hinges. The first assumption corresponds
very closely to the case of an airplane with power-actuated con-
trol surfaces, which are usually irreversible in the sense that the
aerodynamic forces cannot cause them to deflect against the con-
trol mechanism. The second limiting case, controls free, is a
somewhat idealized representation of an airplane with manually
operated controls, flown by a pilot who allows the airplane to fly
“hands-off.”” The degree of stability in these two limiting cases
may be quite different, so that the certainly desirable goals of
both control-fixed and control-free stability may sometimes be
difficult to attain.

The second aspect of the stability problem to which no refer-
ence was made earlier is the influence of the propulsion system.
One must consider both power-on and power-off stability. The
difference is mainly due to two factors: one is the direct effect of
the thrust on the equilibrium and motion of the airplane; the
second is change of aerodynamic forces acting on wing and tail
because of the flow induced by the propulsive system. The latter
effect is generally more significant in propeller-driven airplanes
than in those using jet engines; it is called the slipstream effect.
Even in jet airplanes, most designers locate the tail surfaces well
above the jet stream in order to avoid interference.
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Lateral Motions above the Stall

The stability or instability we have discussed heretofore is con-
cerned with the wing working below the stalling angle. In this
range the lift increases with an increase in the angle of attack.
If the angle of attack exceeds the stalling angle, as mentioned in
Chapter II, the lift decreases with increasing angle of attack.
This makes possible a phenomenon known as autorotation.

Consider a wing with rolling velocity qupCrqued upon etraight

tion for the wing moving downward and a smaller angle for that
moving upward. Below the stall the lift is largely proportional to
the angle of attack, so that the lift on the wing moving downward
is Increased while that on the other wing is decreased. The result
is a rolling moment which damps out the rolling motion. Above
the stall. however, a larger angle produces a smaller lift, so that
a rolling moment is set up which accelerates the initial rolling
instead of retarding it. The resulting steady rotation is known as
autorotation of the wing.

The stall usually does not occur simultancously at all sections
along the span. If the central portion stalls first while the tips
remain unstalled, the danping contributed by the tips is usually
sufficient to counteract the negative damping due to the central
portion. Furthermore, in such a case the ailerons still retain their
effectivencss. On the other hand, if the tips stall before the center,
the damping in roll disappears and also the ailerons lose effeetive-
ness. If such a stall occurs near the ground, recovery may be
almost impossible and a serious accident may result. The de-
signer must avoid tip stall by reducing the angle of attack of the

tip portion or by judicious variation of airfoil sections along the
span. The tip stall is accentuated in the case of wings with a
high taper ratio and especially in those with large sweepback.
For such wings it is frequently necessary to provide high-lift de-
vices, such as leading-edge slots, for the portion near the tip.

The motion of the airplane caused by autorotation of the wing
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is known as spin. The airplane descends along a helical path
while it is continuously rolling and yawing. The best way to re-
cover from a spin is to decrease the angle of attack; the airplane
then goes into a normal dive. In many cases, however, the dis-
tribution of masses in the airplane is such that a gyroscopic
moment t
large control forces are necessary to recover from the spin. The
ailerons are almost always useless, and the elevator often loses its
effectiveness; hence the rudder is frequently the only control sur-
face that remains useful. It is therefore advisable to design the
tail surfaces in such a way that the rudder will not be shielded
by the horizontal tail in a spin. As a matter of fact, the spin is
not an instability and is not always dangerous; evidently some
pilots like to spin. Not all airplanes are able to spin. It depends
on the stalling characteristics and the distribution of masses.

I once met the famous British aviatrix Amy Johnson at a so-
called conversazione of the Royal Aeronautical Society, where the
problem of spin was discussed by British and American engineers
and scientists.

She came to me and asked, “Can you tell me in a few words
what causes a spin and what is the mechanism of the thing?”

“Young lady,” I told her, “a spin is like a love affair; you
don’t notice how you get into it and it is very hard to get out of!”’

Aeroelasticity

In the theory discussed above we have assumed that the struc-
ture of the airplane is rigid. This assumption is justified so long
as the stiffness of the structure is great and the speed of flight is
small, but the effects of deformation of the structure cannot al-
ways be neglected, especially at high speeds. Such effecis are
covered by the term aercelasticity. Aeroelasticity deals with the
mutual influence between aerodynamic forces and elastic de-
formations.

Consider the wing of the airplane as a beam. A beam has a

so-called elastic axis; if the lift force acts on this axis, the result
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is a simple bending without accompanying torsion. But if the lift
acts ahead of the elastic axis, the resulting deformation is a bend-
ing plus a torsion, the latter tending to increase the angle of
attack. This in turn increases the lift and therefore the torsion.
Of course, the elastic stiffness of the wing resists this deformation.
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However increases approxima
with the square of the flight speed, while the elastic stiffness is
independent of the speed, there must be, theoretically, a critical
speed at which the two effects are equal and above which elastic
instability occurs. This speed is called the divergence speed. It is
seldom encountered in actual flight; I observed it once in my
life—it was a very sad experience. In 1922 a sailplane called
Weltensegler—the “World Sailor”—entered a sailing contest in
the Rhon mountains. It was built by a group of ambitious stu-
dents who apparently did not know enough about elasticity and
aerodynamics; it had an aspect ratio of more than 20. At first
the pilot sailed successfully in an updraft. However, when he
came out of the updraft region he went into a dive with increas-
ing speed. As we watched from the top of the mountain, the wing
of the glider was slowly twisted off!

Another trouble due to elastic deformation is the reversal of con-
trol. Consider, for example, a conventional aileron. If the wing
structure is rigid, a downward deflection of the aileron produces
an increase of the lift and therefore a rolling moment which
tends to raise the wing tip. But if the wing structure is flexible,
the wing twist caused by the aileron deflection diminishes the
angle of attack at the wing tip and thereby reduces the lift acting
on the tip section and the rolling moment. Thus, the actual roll-
ing moment may be essentially smaller than the same aileron
deflection would produce on a rigid wing. In other words, the
aileron loses some of its effectiveness. Since this effect increases
with flying speed, there will be a critical speed at which the
alleron is completely ineffective, and for still higher speeds the
action of the aileron will be reversed.

If we take the elastic effects into account, wing theory becomes
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more complicated than it appeared in Chapter II. For a rigid
wing, the effective angle of attack of the relative wind at any
cross section, which determines the lift and drag of the section,
is obtained by combination of the flight velocity and the induced
downwash. For an elastic wing, the magnitude and direction of
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is n turn influenced by the same lift distribution that we endeavor
to calculate. Sears has proposed an approximate miethod for the
calculation of this mutual interaction (Ref. 8). Aeroelastic effects
are important for all high-speed airplanes. If the aspect ratio is
large, the wing twist is significant. For airplanes with small aspect
ratios, we encounter some other types of aeroclastic deformation,
such as chordwise bending.

Finally, we should consider the combined effects of elastic and
inertia forces. One simple example is the following: Assume that
a sweptback, elastic wing performs a plunging motion. The in-
crease of incidence due to the plunging tends to bend the wing
tips upward. But since the plunging is decelerated by the in-
creased lift, the inertial forces tend to bend the tips downward.
This 1s an example in which essential difference exists between
real flight and its simulation in a wind tunnel; in the wind tunnel
the motion of the model is usually restricted, so that the elastic
forces are simulated but without the compensating inertial forces.

The most important example of the co-operation of aero-
dvnamic, elastic, and inertial forces 1s what we call flutter. T will
sketch here the simplest case. Consider a wing fitted with a
hinged control surface and assume that the wing performs a
bending oscillation in an airstream. The frequency of this oscilla-
tion is essentially equal to the elastic frequency of the wing; it is
somewhat influenced by the speed of flight, but the effect is small.
We assume for simplicity that the control surface is completely
free. Since it is exposed to the airstream, it becomes effectively
stiff, just like a weather vane; it has an apparent elastic stiffness.
This apparent stiffness determines the frequency of the oscilla-
tion of the control surface; its frequency evidently increases with
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the speed of the airstream. If its frequency coincides with the
bending frequency of the wing, one observes a large increase of
the amplitude of the oscillations.

In this simple case the flutter has the character of a resonance.
Perhaps the simplest example of a resonance 1s that of a pendulum
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quency equal to that of the pendulum. It is easy to show experi-
mentally that in this case the pendulum will go into large oscilla-
tions. The phenomenon of resonance is cleverly used by people
predicting hidden processes with a pendulum. They predict, for
example, the existence of water or ore beneath the ground. They
tune the pendulum to the frequency of their pulse, so that the
slightest movement of their hand causes the pendulum to oscillate
with considerable amplitude. Our simple flutter case is based on
a similar principle.

The wing, being elastic, always oscillates slightly, so that the
hinge of the control surface is in periodic motion, even if this is
not visible to the naked eye. This motion is not objectionable,
except when the frequency of the control surface becomes equal
to the frequency of the wing. In this case resonance results and
both the wing and the control surface develop large amplitudes
of oscillation. The reader may wonder what is the source of the
relatively large kinetic energy of this violent oscillation. It is true
that the relative airstream tends to damp the bending vibrations
of the wing, but the oscillations of the control surface take energy
out of the airstream and excite the oscillation of the wing instead
of damping it. This example is somewhat oversimplified, but it
serves well to show how self-excited oscillations can exist at a certain
speed or in a certain speed range. Actual flutter phenomena are
much more complicated; for example, resonances are possible
between any combinations of bending and torsional oscillations
of the wing and many types of oscillations of the control surface.
Flutter is an important and difficult problem of aeroelasticity;
many aeronautical engineers specialize in it. Every major air-
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craft company has a department devoted especially to the flutter
problem.

Some years ago, when 450 to 500 miles per hour was still a
high speed, the president of an aircraft company in California got
a telephone call from Wright Field that his prototype airplane
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The president called in his vice-president in charge of engineer-
ing and said, “This is a scandal! We have the best mathemati-
cians, a whole department for flutter, and still General X calls
me from Wright Field to say that we have flutter at 450 miles
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per hour

So the vice-president went to the head of the flutter group and
said, “They have telephoned from Wright Field that our new
airplane has flutter at 450 miles per hour!”

To which the engineer replied, ““Oh really? I am glad to hear
that. In my report to you I predicted flutter at 445 miles per
hour!”

The science of aeroelasticity, including flutter theory, is now in
a period of active development. This is especially true because
the large forces acting on airplane parts in high-speed flight re-
quire the designer to analyze more and more exactly the elastic
deformations of the airplané structure. Although the mathe-
matics of the problem have become more complex, the develop-
ment of novel computing devices allows the engineer to obtain
the solution of complicated systems of equations in much shorter
time than before and with increased accuracy. Not only have
such computing devices found wide application in aeronautical
engincering, but some acronautical engineering organizations
have even gone out of their way to improve and produce new
computing machines.
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CHAPTER VI

» From the Propeller
to the Space Rocket

MANKIND’S yearning to fly was the force which drove in-
ventors and scientists to find out how to fly. Another psychologi-
cal trend that is even more general and even older than flight,
but most evident in the history of flight during the last fifty years,
1s mankind’s yearning for speed. We often hear of new speed
records but seldom hear anyone question why it is necessary to
travel so fast. Who knows whether the world would not be hap-
pier without the great speeds at which we now move? But it
seems that striving for greater speeds is human nature. While
economic reasons may influence this desire for greater speed to
some extent, the principal motivating factor seems to be psycho-
logical—perhaps just the love of setting new records. Young
students with athletic ability may have brilliant scientific minds
and still believe that to jump two inches farther than anybody
else is an important contribution to human progress!

What Price Speed?

Before I start on the subject of this chapter, namely, the history
of our knowledge of aerial propulsion, I want to mention a study
that I made a few years ago, partly for fun, partly from scientific
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known airplane designer and director of the Fiat airplane fac-
tories, I made a kind of factual-—not theoretical-—survey of exist-
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ing vehicles, including those moving on the earth, on and in the
watcr, and in the air, from the viewpoint of how much power
they have available per unit weight. The study was called “What
Price Speed?” For the purpose of comparison we plotted the
specific power, defined as the ratio of the maximum power avail-

-
QC AP IT 1‘1# I}
T Y 1 i1l U

)

the vehicle, as a function of its maxi-

mum speed (Fig. 6 ) We found a kind of limiting line, a straight
line in the logarithmic diagram, such that all presently known
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Fig. 65. Specific power, defined as the ratio of the maximum
power available to the gross weight of the vehicle, plotted as

a function of its maximum speed. (From G. Gabriel i1 and
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Th. von Karmén, in Mechanical Engineering, 72 [1950], 776,
by permission of the American Society of Mechanical En-
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single vehicles are on its left side. (As “vehicles” we included also
the pedestrian, the horse, the cyclist,—but no fish or fowl.) If
any point is far above the straight line, it means that it is not
as economical as it could be for the same maximum speed. For
example, we see how economical merchant shlps are until they
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up suddenly. The data presented in the diagram are not average
values but best values; hence the power indicated by each curve
represents the minimum value necessary for the given type of
vehicle. The pedestrian, cyclist, and horse are estimated from
some scientific calculations. I do not have any explanation why
the race horse, whose speed is about 40 miles per hour, has
exactly the same specific power as a good battleship!

This diagram has still another interesting characteristic. If the
specific power is proportional to the speed, the total work neces-
sary for transportation over a given distance is the same. This
condition corresponds to straight lines of 45° slope in the logarith-
mic diagram. We can therefore say that any vehicle performs
best where its curve has a 45° slope. If the slope is less than 45°,
the vehicle is improved by increasing its speed. If the slope is
greater than 45° this is a sign that the vehicle is beyond its best
application. For example, if we take the curve for commercial
airplanes, we see that between 200 and 300 miles per hour the
slope is about 45° or a little less. It is really true that the faster
Constcllation is more economical than the slower DC—g, if econ-
omy is measured by the horsepower-hours necessary to transport
a load over a given distance.

Jet fighters have a curve of steeper slope; they cannot, of course,
be called economical. There are two reasons for using less eco-
nomical transportation; one is that with greater speed you can
use your vchicle more. The number of hours per month being
the same, the distance flown will become greater. This is the
pquSOpuy under which jCL-uTlVCﬁ airplanes arc UClﬁg‘ pI‘OmOtéu
for commercial use. They may permit a greater number of
passenger-miles per year, assuming that the airlines can fly them
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the same number of hours; i.e., that they do not require more
time for maintenance. Secondly, of course, the use of noneconomi-
cal vehicles may be imperative for military purposes, where it is
necessary to be faster than the other fellow.

I would conclude that if we want to arrive at a judgment con-

cerning different meth

to take into account several points. First, the fundamental economy
of the power requirement; second, the practical economy of its
use in transportation; third, all the other viewpoints*—psycho-
logical, political, and the like. What a human being will pay for
speed is very hard to predict. How much will the average man
pay for a trip of five hours which would otherwise take ten hours?
I recommend this question to economists, psychologists, and other
representatives of the social sciences as a worth-while study.

Theory of Propellers

The recent great progress in propulsion is generally known as
the transition from the propeller to propulsion by reaction.

A few years ago I was in Paris during the time of peace negotia-
tions between the Allies and some Eastern European countries.
A Hungarian woman journalist came to me and wanted an inter-
view. She asked me what I thought was the greatest progress in
aviation in the last decade. I told her, ““Propulsion by reaction.”

She said to me, ““Professor, could you express this in some other
way? I cannot write in a progressive paper that progress is ac-
complished by reaction!”

I tried to find a Hungarian word for jet and she left, apparently
satisfied.

In reality, differentiation between propulsion by propeller and
propulsion by reaction is not quite correct. From the viewpoint
of general principles of mechanics, the propeller is also a device
for propulsion by reaction. This was not the opinion in early
times, however, when propellers for lifting weight in air, and
later for driving vehicles in water and air, were invented and
investigated. The fundamental concept then was that the pro-
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peller blade is part of a helicoidal surface which penetrates the
fluid medium as a screw penetrates a solid body. Consider a
screw jack: the screw advances one helicoidal pitch with every
revolution, and, if we neglect friction, the work necessary to turn
the screw is equal to the work necessary to lift the weight. It was
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trates a fluid medium—air or water. The fluid, however, yields,
whereas a solid does not. Consequently, the advance of the
propeller in the axial direction is less than the pitch of the heli-
coidal surface. Then the primitive propeller theory said that, if
the advance in the axial direction were equal to the helicoidal
pitch, the propeller would be 100 percent efficient, since in this
case, neglecting friction, the work done by the advance is identi-
cal with the work required to turn the propeller. When the
propeller slips, the thrust multiplied by thé advance of the pro-
peller represents the useful work done; therefore its efficiency is
equal to 1 minus its percentage slip. This constitutes a primitive
but intuitive kind of propeller theory.

The man who demonstrated that the functioning of the pro-
peller is based on the principle of reaction was Rankine. He was
a very ingenious engineer, mentioned earlier in Chapters IIT and
IV. At a relatively early date when not all engineers appreci-
ated the importance of basic knowledge, he was an advocate of
rescarch and the training of engineers in fundamental science.
When somebody told him that a practical engineer does not need
much science, he said, “Yes, what you call a practical engineer
is the man who perpetuates the errors and mistakes of his prede-
cessors.”” Although the definition is somewhat hard on many good
practical engineers, it is correct in the sense that engineering
education should not only transmit experience from generation
to generation, but should be based at all times on the old and
new developments in fundamental sciences.

Rankine (Ref. 2) recognized that the essential point in the ac-
tion of a propeller is the acceleration of the air mass passing
through the circular area swept by the propeller blade; we some-
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times call this circular area a propeller disk. Let us assume that the
propeller disk is stationary in an airstream. The air moves toward
the disk with the velocity U (Fig. 66), and its velocity ultimately

PROPELLER DISK
U U+u

R

Fig. 66. A diagram illustrating the momentum theory of
-the propeller.

is increased by an amount which we denote by «. In other words,
the propeller takes a mass of air—if used as a helicopter, from
above; if used for propulsion, from the front-—and accelerates it
downward or backward, respectively. The rate of change of
momentum is equal to the thrust. If Q is the mass of air which
goes through the propeller in unit time, then the product Qu is
the rate of change of momentum. On the other hand, if we
consider the propeller advancing with the velocity U through
air at rest, the work which has been expended is equal to the
increase of kinetic energy of the air: 3Q[(U + u)? — U?], or
Qu(U + 3u). Now, if we define as efficiency 7 the ratio of the use-
ful work done, QuU, to the total work expended, Qu(U + }u),
we get the following formula:
QuU I

17:Q_u(U-{—%u) B 1 u

This quantity is, of course, always smaller than 1. We call it
the propulsive efficiency. In order to have good propulsive efficiency,
i.e., a va I ity increment, », must be small

in comparison to the flight velocity, U. For example, if « is
equal to U, i.e., if the acceleration is 100 percent, the efficiency
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is only 67 percent. This calculation does not include all the
losses, such as, for example, the loss due to rotating motion im-
parted to the air or the friction on the propeller blades.

The principle that an efficient propeller requires as small a
value as possible for the velocnty increment of air passmg through

poty

ciple. VVC often have to tolerate jet velocities that are high com-
pared to the flight velocity, although we know that the propulsive
efficiency will be poor. For example, with rockets the outflow
velocity of gas may be equal to 5,000 to 6,000 feet per second,
whereas the flight velocity may be only around qoo feet per
seccond. One can easily calculate how poor a rocket airplane
would be for commercial purposes. Rankine’s simple theory
furnishes a result of prime importance.

We may ask the magnitude of the maximum thrust that can
be developed by a propeller of given size, say by a propeller with
a disk area equal to 8. In order to calculate this value, we have
to assume a relation between the air mass flow, ), and the area,
S. In general, one assumes that the average velocity of the air
traversing the disk area is the arithmetic mean value between the
velocity, U, far ahead, and the velocity U + u, far behind,
the propeller. With this assumption one can show first that, pro-
vided the same work is expended per unit time, the maximum
thrust is reached when U = o, i.e., if the propeller stands still
and the air is originally at rest. In this case the ratio of power
required, P, to the thrust available, 7, is given by

P_ 1T
T‘\/EI/pS

where p is the density of air. This formula applies, for example,
to a hovering helicopter, for which T is equal to the weight, W,

to bc supported. We remember that a similar formula was ob-
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f weight, W, by an airplane wing (see Chapter I). The numeri-
cal factor is different, to the disadvantage of the helicopter.

-+
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However, an airplane is unable to hover, and therefore the larger
power requirement for the helicopter is acceptable.

Theory of Propellers: Connection with Wing Theory

The so-called momentum theor_y of the propeller initiated by
langes in mo-
mentum and kinetic cnergy of the airstream passing through the
propeller disk. The rate of change of the momentum determines
the thrust, but the theory does not tell anything about the way
in which the thrust is transmitted from the air to the propeller
structure. Similarly, Rankine’s theory states that an amount of
power equal to the rate of increase of the kinetic cnergy of the
stream has to be put in by the rotating propeller, but it does not
make any statement as to how the work expended by the torque
is transferred to the air. On the other hand, the blade-element theory
1s based on the opposite concept; it considers the propeller blades
moving through the air and computes the forces transferred from
the blades to the air.

Fig. 67 shows schematically a section of the blade. Suppose

)

x CORRECTION

Fig. 67. The velocity rela- <T /
tive to the blade element of €
, §N}
a propeller. U denotes the _J

forward speed, w the angu- L—‘j U
lar velocity, and r the radius O
c O
of the element. r
(s
rw

that the distance of the blade section from the axis of rotation
is r, the angular velocity of the propeller w, and the velocity of

advance (i.e., the flight speed) U. Then, in first approximation
w A T ana ¢ COIMDONENts A il waladd N . ) . cen
Fw ana < 4arc L cul PU 1CIILS Wl LLic l(J.Cll.lVL vCLOCIiL Y L wei

solid and fluid. Thus, if we consider the blade section as a wing
section, lift and drag acting on the section can be computed, and
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by resolving the resultant force into components in the axial
and tangential directions, we obtain the contribution of the blade
element to thrust and torque. Summing up the contributions
from all blade elements, we can obtain the total thrust and torque.

The two theories consider the same process from two entirely

plication of the basic laws of mechanics to a system comprising
a fluid strcam and a body moving relatively to it. On the other
hand, the blade-element theory is based on our knowledge or
assumption concerning the local interaction between fluid and
solid. These two methods go parallel through almost the whole
field of fluid mechanics; scientists and engineers are satisfied only
if they can convince themselves that both methods lead to the
same result. For propellers a satisfactory solution was obtained
by combination of the two theories.

The blade-clement theory was initiated by William Froude
(Ref. 3), the famous English engineer whom we mentioned in
connection with the problem of skin friction. Some years after-
ward the same theory was independently worked out in detail by
Stefan Drzewiecki (1844—1938) (Ref. 4), an engineer and scien-
tist of Polish origin, one of the most distinguished pupils of
Joukowski. Drzewiecki later lived in France and worked with
Eiffel. I had the pleasure of meeting him in Paris. I remember
that at the age of seventy-seven he drove his own car all over
France, going from airport to airport to watch the air races.

Drzewiecki recognized that it may be incorrect to apply the
lift and drag coefficients of a wing of infinite span to a blade
element like that of Fig. 67; he made a correction, assuming an
equivalent aspect ratio for each blade. However, a logical solu-
tion of the problem could be reached only by a combination of
the bladc-element theory and the momentum theory. The prob-

e ite oot + ot e 4 rlﬂ"nv-m-ﬂa tha affartive ralativa
LILLILR. \PLLL I.Cll_1U, VLL .y O1iC 1145 O LW LU B gy BN 4 1C LLIG Tliveuivoe 1uilallive
velocity between fluid and wing section in magnitude and di-

rection.
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The momentum theory clearly indicates that the axial velocity
of the stream passing through the propeller disk is higher than
that far ahead of the propeller. On the other hand, the rotating
blades create a rotation in the air, so that the moment of mo-

mentum of the rotating air must be equal to the torque acting
eller ¢ l’\qff Th\d\, fore the

ir 1n the nlane af the
[& i il

on the pro plane of the
propeller rotates in the same direction as the propeller blades.
Thus the relative velocity in the tangential direction is smaller
than rw. The diagram in Fig. 6% indicates the correction which
one has to apply to obtain the appropriate values of the com-
ponents of the relative velocity. With these components of rela-
tive velocity, we can determine the corrections of the litt and drag
acting on the blade element in direction and magnitude.

Evidently, the corrections in velocity components represent in-
duced velocities; the progress, compared to the primitive blade-
element theory of Froude, is analogous to the progress of the
wing theory achieved by Prandtl. Concerning the determination
of the induced velocities, two steps can be recognized in the de-
velopment of the theory. The first step was the combination of
the blade-element theory and the momentum theory. The mo-
mentum theory makes it possible to compute mean values of the
induced velocities. This method is identical with the assumption
that the actual blades are replaced by a large number of uni-
formly distributed blades. It furnishes very satisfactory results,
especially if one applies a correction proposed by Prandtl (Ref. 5)
for the effects of blade tips. This refinement takes into account
the influence of the number of blades.

The propeller theory sketched on these lines was worked out
in the period 1918 to 1924 by Betz (Ref. 6) and Helmbold (Ref.
7) in Germany, by Wood (Ref. 8) and Glauert (Ref. 8) in Eng-
land, and by Pistolesi (Ref. g) in Italy. I might also mention a
paper published jointly by Theodore Bienen and myself in 1924

I8 b JPN R\
\Cl. 10).

The second step in the development constitutes a direct appli-
cation of the Lanchester-Prandtl ideas to rotating bound vortices
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representing the propeller blades. Helicoidal vortex sheets now
replace the free vortex sheets of Prandtl’s theory. This idea was
first carried out mathematically by Sydney Goldstein in his doc-
tor’s thesis at Gottingen University (Ref. 11). Goldstein became
one of the leading aerodynamicists in England and organized a

Mo AN 'HI il merha in Manrhectear At rmre t

1 r‘c rels] o
g ULl UG Mecnanics in viancneswer,. At i £sen Liv.

is active at the Institute of Technology in Haifa. Two Japanese
aerodynamicists, Moriya (Ref. 12) and Kawada (Ref. 13), con-
tinued the work of Goldstein.

It is gratifying to see the progressive clarification of ideas on
the functioning of a simple device like a propeller, from the
analogy with a screw jack to a complete theory based on the
principles of scientific fluld mechanics and using all the mathe-
matical methods of this science.

From a practical point of view, great progress has also bcen
made in the construction of propellers. I want to mention auto-
matic pitch control and thrust reversal, the latter used by modern
airplanes for braking effect. Sometimes a propeller may go into
reverse thrust when it is not supposed to; the design does not
seem to be absolutely perfect yet. The latest progress concerns
propellers for very high speeds, e.g., supersonic spceds. The diffi-
culty here is that, as we have seen in Chapter IV, the drag at
supersonic speeds depends to a large extent on the thickness of
the wing section. A supersonic propeller must therefore have very
thin blades, which, however, introduce difhiculties of possible
vibration and excessive deformation. Thus the design of such
propellers and the finding of appropriate materials and blade
shapes present serious problems.

A DYoL
Fet Engines and Rockels

For almost forty years from the date of the first powered flight,
the propeller driven by a reciprocating internal combustion engine
arac tha el o aarial v | P ¥ thaca sromc
¥wWdd L1 Ullly 111 Alld Ul aCl ldl plUPulblUll AL LUUlL G, lll LIIU OO ‘\/Lalb

the aircraft reciprocating engine made tremendous progress. For
example, we have mentioned that the engine used by the Wright
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brothers had a weight of 15 pounds per horsepower; this rauo
has been reduced to less than one pound per horsepower. In
addition, a system of new propulsion devices competing with the
conventional engine and propeller is now either in use or devel-
opment. Fundamentally, as we have already mCl’lthIlCd all
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1 or jet p
They differ mainly in the manner in which energy is utilized to’
activate the jet.

Power for aerial propulsion can be produced by using the
oxygen of atmospheric air as a chemical reactant in combination
with some fuel, e.g., a hydrocarbon such as gasoline or kerosene.
A second class of propulsion devices uses propellant combinations
that produce power without the use of atmospheric oxygen. Such
propulsion devices are called rockets. Finally, nuclear reactions
can be used as the source of power.

Let us consider in more detail these three classes of propulsion
devices. The devices using air and fuel can be subdivided accord-
ing to the method of activating the jet whose reaction furnishes
the propulsive thrust. With the propeller, the jet is produced by
purely mechanical means. The propeller was driven exclusively
by reciprocating engines, 1.¢., piston engines, until the lightweight
gas turbine was developed as a prime mover. The propeller and
gas-turbine combination is called turboprop—not a pretty English
word but almost generally accepted. The compound engine,
which is also used to drive propellers, is a composite of a piston
and a turbo-engine.

Jet propulsion proper is different from the propeller in that
the jet is activated by the introduction of heat energy, e.g., by
combustion of the fuel in the atmospheric air. Such devices are
called thermal jet-propulsion engines. The basic idea of such an
engine is to produce high-pressure, high-temperature gas, which,
being ejected from a tail pipe, furnishes the thrust. In the begin-

T e Adacalmmc amt b sarma e 4 aeee I T R T
111115 of the acvelopment 1t was an item of discussion whether a

™

combination of reciprocating engine and compressor or a gas
turbine should serve as gas generator. Present jet engines use the
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gas turbine exclusively. The jet-propulsion engine designed by
Secondo Campini and flown in 1940 in the Campini-Caproni
airplane used a reciprocating engine. However, the first jet-
propelled airplane ever flown (1939), the German Heinkel 178,
used an engine of the type called the furbojet (Fig. 68).

Combustion
chamber

I Turbine -Ji/"\u |

i I I
CWD'M I A [ Throttle)
Gy (fuel)

)

G, (air)

Fig. 68. Schematic diagram showing the elements of a

turbojet. (From M. J. Zucrow, 7et Propulsion and Gas Tur-

bines [copyright 1948, John Wiley and Sons, Inc.], by
permission.)

The main parts of such a device are (¢) a compressor, which
takes in air from the ovtside and brings it to a certain pressure
in order to make the combustion and the transformation of heat
into mechanical energy more economical, (4) a combustion
chamber or combustor, in which fuel is injected into the air-
strecam and burned, and (¢) a turbine. The shaft output of the
«turbine drives the compressor, and ordinarily the gas leaves the
turbine at high velocity and forms the jet that makes the thrust.
We see that the turbine-compressor combination ultimately serves
as a gas generator for producing the jet.

The first turbojet engine, mentioned above, the He S—3b,
was designed by Hans-Joachim Pabst von Ohain, an engineer
educated at Gottingen and employed by the Heinkel company.
This engine developed about 1,100 pounds of thrust. Its com-
pressor was of the centrifugal type and the turbine had radial
inflow.

The development of jet engines in England and the United

+ At als P | il AL Qs Taan w1 YATL. S +¢IA

States is intimat teiy associa ted with the work of Sir Frank Whittle.

do not want, however, to go into the details of this history.
An excellent monograph by Raobert Schlaifer (Ref. 14) gives a
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very complete account of the developments in the critical period
preceding and during World War II, in various countries.

Some of the components of turbojets, like the centrifugal com-
pressor and the turbine, had been used before as parts of con-
ventional engines, viz., in superchargers for reciprocating engines

1 167 go]f:fnnfqn ﬂ:n-l"\f (MArm hiictinn r-l"\')m]'\c-r-c
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of course, but the combustion of fuel in an airstream of relatively
high velocity was a novel problem.

The thrust of the largest units built at present is of the order
of 15,000 pounds. In many turbojets the thrust, at least for a
short period, can be substantially increased by afterburning, i.e.,
by the injection of additional fuel into the tail pipe, using up the
surplus oxygen contained in the jet. This is, however, an un-
economical process. Centrifugal compressors are being replaced
more and more by. axial compressors, a series of rotating disks
with large numbers of blades, with stationary bladed disks in
between. The design of both compressors and turbines involves
new acrodynamic problems, which lie in the field called the
aerodynamics of internal flow, as distinguished from the aero-
dynamics of external flow, involved in the design of wings,
fuselages, tail and control surfaces, and the like. The flow of
compressible and incompressible fluids through a sequence of
blade sections, called a wing cascade, 1s one of the basic problems
of this new branch of aerodynamics.

Turbojets have the advantages of lighter weight and smaller
frontal area than conventional engines. Their fuel consumption
for the same performance is less favorable. Weight and fuel con-
sumption are usually referred to unit thrust (pounds of fuel per
hour and per pound of thrust) instead of unit power (pounds of
fuel per hour and per horsepower). Turbojets with axial com-
pressors are usually superior to those using centrifugal compressors,
having smaller frontal area and smaller internal aerodynamic

If we imagine that an airplane is flying very fast, say over
400 miles per hour, then the air that enters the engine can pro-
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duce compression without anv auxiliarv device. This is called
the ram effect. By use of the ram effect, we can simplify the engine
by throwing away the compressor and turbinc. The resulting
device is called a ramjet (Fig. 6g). It was proposed as early as

Flame holder

<

< e
<

<

v

" - y o

Fig. 69. Schematic diagrain showing the cleinents of a
ramjet. (From Joseph Liston, Pawer Planis for Auncraft
[copyright 1953, McGraw-Hill Book Co., Inc.], by per-

mission. )

1gog by René Lorin (Ref. 15). It possesses extreme mechanical
simplicityv but is penalized in comparison to the turbojet by higher
fuel consumption- -at least up to the flight-speed range of high
supersonic Mach numbers—and by the fact that without a spe-
cific starting device it functions only above a certain flight
velocity.

A very ingenious device that functions right from zero flight
speed is the pulse-jet (Fig. 70). Like the ramjet it works without
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Iig. 70. Schematic diagram showing the elements of a
pulse-jct. (Courtesy of Flight, London.)
PRG-I T ISR JEUTPE, SISy R: I S S L
COLLLTPIOMSIOLL aild LHICT 1ol e does 11O HHecd a tul billce JOD COLLpressor
drive. It differs from the ramjet in that the process is not con-
tinuous but periodic. This device has intake valves which open
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and close somewhat as in a reciprocating engine, but the valves
are controlled automatically, principally by resonance with the
periodic process of successive compression, combustion, and out-
flow. The idea of such a device goes back to rather early years.

propulsion of the so-called V-1 weapon, also called the buzz-
bomb. The pulse-jet is well suited for target planes as an ex-
pendable propulsion device because of its low cost of manufacture,
in contrast to the turbojet, which i1s a high-priced device. The
manufacture of expendable turbojets has been suggested several
times, but as far as I know has never yet been realized. New de-
velopments in pulse-jets seem likely to succeed in eliminating the
valves and establishing the periodic process on the pure resonance
principle, by appropriate choice of the relative dimensions of the
components of the device (Ref. 16).

The relatively large manufacturing costs of turbojets and the
relatively large consumptions of the ramjet and pulse-jet consti-
tute a challenge to inventors to find devices more economical in
thermal efficiency than the latter and cheaper than the turbojet.
A class of such possible devices are the wave machines, in which
the compression necessary for good thermal efficiency is produced
by shock-wave action. They are, however, still in the stage of
invention or, at best, in early development.

We proceed now to a short discussion of rockets, especially
those using chemical propellants. We distinguish between rockets
using solid propellants (Fig. 71) and those using liguid propellants
(Fig. 72). The solid propellant is usually a mixture of an oxidizer
and a combustible. It differs from an explosive like that used,
for cxample, in bombs, in that it has a relatively slow burning
rate. The burning may proceed through the thrust chamber in
the axial direction (so-called cigarette burning, as in Fig. 71) or
in the radial direction, both from inside and outside, as in many
rockets used as weapons and containing ‘“‘grains’ in the shape of
hollow cylinders. Finally, we have rockets with purely internal
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Fig. 71. Schematic diagram showing the elements of a

solid-propellant rocket. (From M. J. Zucrow, Jet Propul-

sion and Gas Turbines [copyright 1948, John Wiley and
Sons, Inc.], by permission.)

burning; i.e., the combustion procceds from an inner hole. The
art of grain design consists of devising the shape of the grain in
such a way that a desired pressure-time relation is achieved. The
total burning time may vary from half a second to 45 seconds
according to the application: rockets for jet-assisted take-off of
airplanes (JATO), boosters for missiles, forward-firing rockets as
destructive weapons, and the like.

The liquid propellants can be classified as monopropellants and
bipropellants. Monopropellants—e.g., a composition called nitro-
methane —generally produce oxygen and fuel by decomposition,
and the result is the production of a high-pressure, high-tempera-
ture gas mixture. Another known monopropellant is ethvlcne
oxide. With bipropellants, the fuel and the oxidizer are intro-
duced into the thrust chamber scparately (Fig. 72). Commonly
used oxidizers are liquid oxygen, nitric acid, mixed nitric oxides,
and fluorine. Common fuels include, for example, aniline, hydro-
carbons, hydrazine, and ammonia. If a fuel-oxidizer combina-
tion is sell-igniting, it is called a hypergolic combination. Hydro-
gen peroxide acts to some extent as a monopropellant since its
decomposition, initiated by an appropriate catalyzer, produces
considerable heat, and therefore it may be used alone in a rocket;
however, one can complete the process by using up the surplus
oxygen for burning an additional fuel. In this respect it acts as
a component of a bipropellant system.

Solid propellants are stored in grain form in the thrust chamber,
while liquid propellants are introduced through injectors, either
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Fig. 72. Schematic diagrams showing the elements of two liquid-piopellanF
rocket systems. The upper system uses pressurizing pumps in the oxidizer and
fucl lines, while the lower employs a high-pressure inert gas to pressurize the
propeliants. (From M. J. Zucrow, Jet Propulsion and Gas Turbines [copyright

1948, John Wiley and Sons, Inc.], by permission.)
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by means of pumps or from tanks put under pressure. In all
rockets the intention of the designer is to obtain stable burning
at constant chamber pressure. The jet leaves the combustion
chamber through a nozzle, usually with a speed slightly above

the velocity of sound corresponding to the high temperature of
3 f the

the combusti
nozzle, after contraction to a smaller sectional area, is slightly
expanded. The process of outflow is similar in all jet devices.
It can be shown that if a compressible fluid lecaves a chamber,
which is at sufficiently high pressure, through a simply con-
vergent nozzle, the velocity of the fluid at the exit is equal to the
sound velocity corresponding to the temperature prevailing there.
Some cngincers concluded that a stream of gas or, in general,
a compressible fluid cannot reach by expansion a velocity higher
than sound velocity. The Swedish engincer, Carl Gustaf Patrik
de Laval (1845-1913),! discovered that, if one wants to increase
the velocity of gas in a nozzle bevond the velocity of sound, the
nozzle, after converging to a minimum cross-sectional area, has
to be expanded to a larger cross-sectional area. The velocity in
the minimum cross section is—at least approximately (i.e.,
neglecting friction effects)—equal to sound velocity. Laval’s
principle of nozzle design is widely employed in turbines and jet
engines.

In principle, nuclear reactors can be used in almost all jet-
propulsion devices. We can imagine that nuclear reactors may
replace the combustion chamber in a gas turbine or ramject or
the boiler in a steam turbine. The task of the reactor in this
case is to introduce heat into air or water vapor. The main
problem is to find mecthods to take heat out of the reactor and
transfer it to air or vapor at sufficiently high temperatures; other-
wise the efficiency is poor and the device becomes bulky. This
involves technological problems of great difficulty. For manned

1. . 1 ~
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crew or
passengers fromn radiation effects, is critical. Materials also have

I Also inventor of the cream separator.
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to be protected against radioactive corrosion. To produce a
nuclear rocket one might think of using jets of fission products
directly for propulsion. A “photon” rocket has also been pro-
posed. In such a device no mass is expelled from the rocket. The
radiation pressure is directed to produce thrust. For the time

of low molecular weight, so that high velocities can be reahzed
at moderately high temperatures. The next decade probably will
show what can be accomplished by the use of nuclear reaction
in the field of jet propulsion.

Choice between Propulsive Systems

The general impression is that, except in small and medium-
size transport and training planes, reciprocating engines are on
their way out in the field of airplane propulsion. Helicopters,
which receive increasing attention for moderate ranges in aerial
transportation, both commercial and military, may prolong the
lifetime of reciprocating engines. In long-distance aerial trans-
portation the propeller driven by compound engines (combined
piston engine and turbine) or by gas turbines (turboprop)
likely to prevail, at least for a few vears, because of the superior
propulsive efficiency of the propeller compared to the pure jet.
certainly at high subsonic speeds.

The question of the appropriate choice of the best propulsive sys-
tem for a given type of aircraft is a rather complicated and much-
discussed problem. The first question is the comparison between
the power required and the power available. The main goal of
early calculations on the possibility of powered flight (sec Chapter
[) was to show that it is possible to make as much power available
as the minimum power required for flight. In one of his talks deal-
ing with the early period of aviation, Igor Sikorsky jokingly said
that he had built an airplane which was unique in that its mini-
MU, CI"UiSiI'lg,, and maximuin specas werce f:‘XaCu) cqual' Actu-
ally the surplus of power available over the minimum power re-
quired essentially determines the performance of the aircraft.
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The performance calculation for an airplane is the process of
estimating its minimum and maximum speeds, its rate of climb
as a function of the altitude, and its maximum range as a func-
tion of the assumed pay load. The cruising speed and crutsing

s ]
-
ol

planes, with the exception that for the military plane economic
considerations may be secondary; the primary consideration is
carrying out successfully the aircraft’s mission.

A vertical riser is a plane which has sufficient propulsive power
to lift itself along a vertical flight path. In the commercial field
many people are now trying to create a convertible airplane,
which may start either as a helicopter or a road vehicle and
gradually go over to level flight.

Personally I have great confidence in the future of jet planes
in the commercial field, although their higher fuel consumption
and certain practical drawbacks such as, for example, excessive
noise are still difficulties to be overcome. There is little doubt
about the future of jet planes in military aviation; one of the
important questions is how far ramjets and rockets will be used
either as auxiliary or main means of propulsion. There are at-
tempts—for example in France—to develop the ramjet as the
main propulsive device for manned supersonic airplanes, using
auxiliary turbojet or rocket devices to launch the aircraft to a
sufficiently high speed for the ramjet to take over. The majority
opinion at present, however, scems to be that the proper field for
the ramjet is the unmanned missile.

The two main virtues of the rocket are concentration of very
large power in a device relatively small and light and inde-
pendence of atmospheric air. For these we pay a penalty in fuel
consumption. In rocket engineering we mostly speak of specific
impulse, defined as the product of thrust and its duration in
scconds per unit weight of propellant. It is easy to understand
that if we compute the specific impulse for a turbojet engine
without considering the air as “propellant’” (as against the rocket
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propellant, which contains its own oxidizer), we arrive at a
number several times higher than that of the most efficient
rocket. For example, the specific impulse of a turbojet that con-
sumes I pound of fuel per hour per pound of thrust amounts to
3,600 seconds, whereas the usual value for liquid-propellant
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time production of large thrust, whenever manned airplanes or
missiles need it, and, second, flight at altitudes where sufficient
oxygen is not available. Rockets for assisted take-off and super-
performance of manned aircraft and for boosters for the launch-
ing of missiles are in wide use. The German V-2 weapon had
rocket propulsion exclusively, and similar weapon systems on the
borderline between ballistics and aviation are in development in
several countries. Finally, space travel by rocket ships is a popular
subject both for science fiction and serious scientific resecarch.

The rocket itself was probably a Chinese invention which
started as a fire arrow. First bow and arrow were used to transport
incendiary material, then the reaction of the combustion gases
was used for propulsion of the arrow. However, an unconfirmed
story also coming from China shows that rocket propulsion for
flight was considered as early as around 1500. This story tells
of an inventor named Wan-Hoo, who built a chair on two wheels
and sat in the chair holding two kites in his hands for sustained
flight. For take-off he attached forty-seven black powder rockets
to his chair. According to the story, he succeeded in firing the
rockets. After that, however, smoke and fire developed and
Wan-Hoo, chair, and kites disappeared!

Through the centuries rocketry has been prominently used in
parallel with gunnery. However, as the accuracy of gunnery was
improved by the introduction of rifled guns, rockets temporarily

lost their importance. The British General Staft decided. in the
A half ~Af the lact

-
CAaMNMTY ar lhad ]
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century, tha _
significance. Pyrotechnics, of course, continued to employv rockets.
Signal rockets, also, have long been used, for example, in rescue
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work along the seacoast. Rocket developments for military pur-
poses had a new boom during the Second World War. In the
meantime, a number of forward-looking individuals have main-
tained an interest in large rockets and have toyed with the idea
of space travel.

Space Travel

Speculation upon space travel is practically as ancient as
speculation upon powered flight in the atmosphere. Legend and
fiction contain many more or less fantastic descriptions of travels
to the moon, around the moon, or to another planet. Some
writers on the history of science credit Cyrano de Bergerac (Ref.
17) with predicting jet propulsion as a means for space travel as
early as 1648 or 1649, when he wrote his account of a voyage to
the moon. At the end of the last century a German mathematics
teacher, Kurt Lasswitz, wrote a widely read interplanetary novel
(Rel. 18), which, according to the testimony of the author’s son,
first referred to a space station. This station, however, was not
a satellite traveling around the earth; it was suspended between
Mars and the earth at a point where the gravitational forces are
balanced. Shortly afterward, in 1gog, Konstantin E. Ziolkowski,
a Russian mathematics teacher, described a streamlined, rocket-
driven vehicle for space travel which used liquid oxygen and
hydrogen as propellants (Ref. 1g). He was perhaps the first man
to base his project on sound principles. His proposal included
gyroscopic control and a jet deflector for navigation in space.

In this work it is not possible for me even to refer to many
of the most interesting and relatively serious publications on the
problem. I shall, however, mention Robert H. Goddard (1882-
1945), who in 1919 in this couutry studied methods of reaching
extreme altitudes (Ref. 20), and Hermann Oberth, who in 1923
in Germany published a book on rockets for interplanetary spaces
(Ref. 21). Oberth was able to inspire a group of younger men to
work on rocket design; this group was instrumental in developing
the V=2 rocket projectile during the last World War. It appears
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that Oberth had little opportunity to contribute directly to the
design of this rocket, which certainly represented great progress
in the direction of long-range, high-altitude rockets. The V-2
rocket still holds the altitude record for a single vehicle. The
hlghcst altltudc (242 miles) has been reached by a two-step
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the latter was designed by Frank J. Malina at the Jet Propulsion
Laboratory, California Institute of Technology. Oberth's best-
known successes were his book, mentioned above, and a film pro-
duced by Fritz Lang of U.F.A. in Berlin (1929) and cntitled
“The Girl in the Moon,” on which he collaborated as scientific
adviser.

Wernher von Braun was originally one of the group of voung
enthusiasts who were directly or indirectly inspired by Oberth.
I am convinced he would also be a magnificent adviser to any
Hollywood enterprise in the field of space travel. However, his
merits as promoter and organizer of the V-2 project (under the
direction of General Walter Dornberger) and as a promoter of
space-travel ideas in this country must be recognized.

“What are we waiting for?” says von Braun. It will cost
only five billion dollars! There are no problems involved to
which we don’t have the answers-—or the ability to find theimn—
right now.”” The layman is amazed and the expert is left wonder-
ing. I do not want to be either too skeptical or too enthusiastic.

Performance calculations for the vertical flight of a rocket
escaping from the earth, and for a rocket serving as satellite
around the earth, were carried out by several authors. The
“escape’’ velocity U, i.e., the velocity necessary to escape from
the gravitational force of the earth, is roughly estimated bv the
simple equation 3U.2? = gR, which equates the kinetic energy
of the unit mass to the work necessary to move the unit mass
from the distance R to infinity against the gravity force, neglectinq
all other resistance. Substituting for g the value of the accelera-
tion of gravity at the earth’s surface and for R the radius of the
globe, U, becomes of the order of 7 miles per second.
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The satellite velocity is somewhat dependent on the altitude at
which the satellite is supposed to cruise. If the vehicle travels on
a circular path of radius R + 4, its velocity, U,, must be great
enough so that the centrifugal force will be equal to the accelera-
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orbit will be traversed in about 2 hours. Satellite trajectories
leading from initial vertical flight to a circular path also were
calculated by various authors.

The fundamental question is whether we can produce a rocket
which would reach these tremendous velocities. Malina and
Summerfield (Ref. 22), on the basis of an extrapolation from the
data of rocket technology in 1946, calculated the ratio of the
required weight of propellant to the initial total weight of a
single rocket for reaching escape velocity. They obtained the fol-

lowing values corresponding to various propcllant combinations:

Anilin 4 nitric acid 995
Oxygen + alcohol 991
Liquid oxygen + liquid hydrogen  .g6o

These figures mean that even in the case of the best propellant
combination only 4 percent of the initial weight remains available
for structure and pay load. It is evident that, except perhaps by
the use of nuclear power, a single rocket has no chance of leaving
the gravitational field of the earth. There remains the possibility
of the “‘step-rocket,” i.e., an arrangement in which parts of the
structure, after the propellants carried in them are consumed, are
left behind and only the last remaining *“step” carries out the
mission of the space vehicle. The step-rocket for space travel
was suggested by Ziolkowski. Before him it was proposed by a
French doctor by the name of André Bing (1g11) for high-alti-
tude research purposes. The concept appears to be much older;

e
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is mentioned in the Encyclopédie of Diderot and D’Alembert.
A great number of authors have carried out more-or-less de-
tailed and more-or-less reliable calculations on possible mass
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ratios. The reader may peruse, for example, the book by Willy
Ley on Rockets, Missiles and Space Travel (Ref. 23), which contains
much interesting historical and technical information. The re-
sult of these calculations is brieflv the following: In order to

reach escape velocity, it is hard to do better than to start with a
o : .

wher
initial take-off weight is about sixty-four times larger than the
end product that would sail into the wide empty spaces of the
universe.

Well, even if the initial weight of a man-carrying space rocket
seems enormous at first thought, onc can adjust one’s mind to
larger and larger figures. Let us, however, listen to a critic, in
the person of Milton W. Rosen (Ref. 24), in charge of onc of the
United States Navy’s important missile projects:

Altitude is the primary factor in any consideration of the feasibility
of a manned, earth-returnable rocket. . . .

According to recent unofficial, but reliable reports, a Douglas Sky-
rocket [a rocket-powered airplane] has reached an altitude of 15 miles
and its pilot has returned safely to the earth’s surface. For an altitude
of 15 miles, then, feasibility has been demonstrated. No more needs to
be said.

Feasibilitv can be shown for a manned earth-returnable rocket that
reaches an altitude of between 15 and 50 miles, even though no human
has ever reached these heights. Rockets have been built which can
ascend 50 miles and which can carry the necessary payload involved in
transporting a human being. The significance of the 5o-mile height is
that parachute recovery has been successful below this altitudc. Entire
WAC Corporal rockets and instrument sections from Aercbees have
been recovered by parachute from altitudes up to 50 miles.? Moreover,
the accelerations encountered on the powered ascent are within the

*Mr. Rosen might have mentioned that one Aerobee rocket carried three
monkeys and two mice in its instrument section to an altitude of 36 miles, in
1952. The United States Air Force succeeded in returning these personnel of
the animal kingdom to earth by parachute without damage. By means of a
motion-picture record, the behavior of the animals in gravity-frec flight has
been studied (U.S.A.F, Film No. 19832, ““ Animals in Rocket Flight,” Aero-
medical Laboratory, Wright Air Development Center).
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tolerance limit of human beings. The maximum velocity is sufficiently
low that, for a vertical ascent, the vehicle skin temperature will not tax
the capacity of known materials and techniques of construction. The
most important feature of a flight to less than 50 miles is that' the dura-
tion of flicht will be brief—a matter of several minutes. For this reason,
many of the difficult problems that would be involved in flights to
hizher altitudes will be ignored when the altitude limit is only 50 miles.
These problems include the effects on the vehicle and its passenger of
cosimic and solar radiarion, meteor collisions, and free fall in a

Above 50 miles the situation is entirely different. Attempts at para-
chute recovery of instruments have not been successful. Depending
upon the altitude to be reached, the accelerations could be beyond
liuman tolerance limits and vehicle skin temperatures above the niel:-
ing points of available materials. The Viking rocket, which reached an
altitude of 196 miles, could have carried a man, but no one could have
insurced his safe return. Moreover, no one could have calculated the
probability of his survival; there are too many “unknowns.” For ex-
ample, if the duration of the flight 1s long, the effects of cosmic and solar
radiations must be considered, but the nature and quantity of these
radiations in outer space have not been fully determined and we are
only heginning to study their effects on living cells. Another risk hard
i assess is the danger of meteor collisions; although this hazard has
been estimated and various schemes proposed for eliminating it, none
have ever been tested. It is not possible to predict the physiological and
psvehological effects on a human being of weightlessness; a normal con-
dition in space flight, but one rarely encountered in our earth-bound

Hives.

Oune basic problem has to be mentioned-—the problem of safe
return to the earth or landing on anv celestial body. Any rocket

- | I
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nen-
dous speed. At such speeds, probably even in the thinnest air,
the surface would be heated beyond the temperature endurable
by any known material. This problem of the temperature barrier

¢ Reproduced by permission of the author and the American Technion
Suociety.
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is much more formidable than the problem of the sonic barrier.
Even if it might be possible to arrange a gradual entrance into
the atmosphere, approaching the earth by exact control along a
spiral trajectory, it is improbable that a return can be achieved
without using rocket power as brake. This, of course, means an
enormous amount of fuel reserve. Unfortunately, we cannot
imitate Lucian of Samosata (second century A.p.) who made his
space-traveler hero, Menippus, return to earth in a very simple
way: the God Mercury took hold of his right ear and deposited
him on the ground.

The medical or biological problem of prolonged existence in
a gravity field of practically zero intensity—a weightless existence
-—may be serious, and resecarch in this direction appears highly
desirable. Medical people may sometimes be too cautious. In
The Hustory of Aeronautics by Vivian and Marsh (Ref. 25) we learn
that, at the time of the Montgolfier balloons, doctors were worried
about altitude effects, since the general opinion was that the
atmosphere does not extend beyond four or five miles above the
earth’s surface. So one day in 1789 they put a cock, a sheep, and
a duck aloft as passengers in a balloon for an eight-minute ascent
and descent. The duck and the sheep came through all right, but
the cock was apparently affected by the rarefaction of the at-
mosphere. However, it came out later that the sheep had trampled
on the cock, causing more physical injury than any that might be
inflicted by rarefied air!

Let us return to the question of performance. It appears to me
that the use of nuclear energy will make the rocket so much more
efficient that serious attempts to build a space ship should await
the advent of the nuclear rocket. For a rocket using hydrogen as
working fluid and a nuclear reactor as heat source, the specific
impulse of the working fluid can easily be made several times the
present values for the usual propellants, without substantially
raising the temperatures to which the rocket walls have to be
exposed. Further developments in the use of nuclear processes
for propulsion may allow even more significant improvements.
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In the meantime, basic studies in aerodynamics and the physics
of rarefied, ionized gases, gradual exploration of the highest alti-
tudes reachable by sounding rockets, study of radiation effects
on material and humans, study of navigation and guidance prob-

1
enthusiasts of space travel enocugh to do. I do not believe in
reckless promotion. On the other hand, I think that the ‘‘re-
spectable™ scientific and engineering societies should not close
their doors to the astronauts or the pages of their journals to
papers dealing with the problems of space travel. The present
congresses and meetings of the astronautical and interplanetary
societies have a relatively high scientific level, especially if we
compare them with the activities of certain aeronautical societies
only twenty-five years before the first mechanical flight.

Perhaps the effort necessary to proceed from the present-day
long-range, high-altitude rocket to a manned space rocket is no
more than the effort which led from the Wright brothers’ airplane
of 1904 to today’s supersonic aircraft. This progress was achieved
through the thinking and striving of two generations of practical
engineers and theoretical scientists. I am satisfied if I have suc-
ceeded in presenting some of their problems, in a sketchy way,
in the six chapters of this book.
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Euler, L., 51

Eulerian method, 85

Expansion waves, 123

Experimental techniques in early aero-
dynamics, 11-15

Extension of lifting-line theory to lift-
ing surfaces, 55

Falling bodies, experiments using, 12-
13

Feldmann, F,, 128

Ferris, R, 22

Fillet, wing-fuselage, 151-152

Finsterwalder, S., 24

Flap, trailing edge, 48

Fiax, A. I1,, 55

Flettner, A, 34

Flettner rotor ship, 34

Flight theories, semiempirical, 17-24

Fluid mechanics, mathematical, 17,
25-27

Flutter, 159-161

Flying wing, 146

Foppl, A, 51

Force-momentum law, 9, 50

Franklin, B., 6

Free vortex, 48

Friction, fluid, 74

Frictional drag, 61

Frictional forces, 61

Froude, W,, 88, 171

Fulton, C. D,, 139

Gabrielliy G., 163
Galilei, G, 8
Galloping power lines, 71
Gas turbines. 174-177. 1
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Handley-Page, ., 47
Heavier-than-air craft, 6
Heinkel-178 airplane, 175
Heisenberg, W, 91,92, 95
Helicoidal vortex sheets, 173
Helicopter, 5-6, 182, 183
power required to hover, 169
Helmbold, H. B., 172
Helmholtz, H. von, 20, 25, 41
Helmholtz’ theorem on vortex motion,
41, 48
Helinholtz” theory of flow about a
plate, 25-26
Henry, R,, 19
Hiemenz, K., 70
High-lift devices, 47-48, 156
Hot-wire anemometer, 85
Howarth, L., 91
Howland, W. L., 130
Hugoniot, P, H., 118-119, 125
Human flight by muscle power, 20-
21
achieved by Bossi and Bonomi, 21
Helmholtz’ opinion of, 20
Hurel-Dubois, 67
Hypersonic-speed range, 122

Icarus, 3
Impulse, specific, 183-184
Induced drag, 61, 62-67

minimum, 65-66
Induced velocity, 49, 64-65, 66

of propeller, 171-172
Instability of laminar flow, 94-95
Integral equation:
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of Prandt] wing theory, 54

Tsothermal process 105

SAARLAT R AR MLLSTy L

Isotropic turbulence, 90-92

Jacobs, E. N, 96
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166, 183

Jet engines, 173-185

Jet propulsion, 165-166, 169, 173-185
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Jones’s theory for low-aspect-ratio
wings, 56-37

Joukowski, N. E., 14, 35-36, 40, 44,
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Joukowski’s theorem, 40
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Karman-Tsien correction, 115-116,
129
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Kinematic viscosity, coefficient of, 76

Kirchhoft, G., 25, 67, 68

Kirchhoff’s theory of flow about a
plate, 25-26, 67, 68
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Kutta, M. W, 35, 40, 44, 53

Kutta-Joukowski condition, 44, 46
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sional airfoils, 44-46, 54

experimental confirmation of, 44-

45

Lachmann, G., 47
Lagrangian method, 85
Laminar and turbulent flow, 82-87, 90
Laminar flow, instability of, 94-95
Laminar-flow airfoils, 7, 8,96
Laminar sublayer, 93, 95
Lanchester, F. W., 35, 48, 50, 51-53,
149
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sis, 35
Lanchester-Prandtl wing theory, 48-
35, 62-67
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53
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Langley, S. P., 23
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eral)
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Laval, C. G. P. de, 181
Laval nozzle, 181
Lawrence, H. R., 35
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riod of, 3-6
Leibniz, G. W., 104
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Lift, theory of, 31-57
circulation, 34-55
Newton’s, 9-11, 15-17, 19, 25, 26,
46, 122
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54, 65-66, 159
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attack, 21-22, 31, 35
Lift of supersonic airfoil, 114-115
Lift related to circulation, 34-55
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Lifting-line wing theory (see Lanches.-
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Lilienthal, O., 21, 22, 35
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Longitudinal motion, 149
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Mach angle, 108
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Mach number, 78, 106, 108
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Magnus effect, 31-34, 40
Malina, F. ]., 186, 187
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Marey, E. J., 20
Margoulis, W., 77
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Marsh, W. L., 190
Mathematical fluid mechanics, 17, 25-
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Maxim, H.,, 6, 14
Mean free path, 77
Medical problems of space flight, 190
Menippus, 190
Metacenter, 144
Mitlikan, C. B, 90, 94, 151
Millikan, R. A., 81
Missiles, 178, 179, 183, 186, 188
Mixing length, 92
Molecular velocity, 105-106
Moment:
pitching, 148
rolling, 148
yawing, 148
Moment of momentum, conservation
of, 43
Momentum-force law, 9, 50
Momentum theory of propellers, 167-
170, 171, 172
Montgolfier brothers, 6, 190
Moore, N. B., 94, 117
Moriya, T., 173
Munk, M. M,, 56, 57, 65-66, 77

Negative shock, impossibility of, 124
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104-105
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26, 46
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Nozzle, Laval, 181
Nuclear power, 174, 181, 190
Nuclear rocket, 190
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Ohain, H.-J. P, von, 175
Ornithopter, 5

Oscillations, self-excited, 160

Pénaud, A, 23, 145
Peripteral motion, 48
Phillips, H., 14, 21
wind tunnel of, 14
wing profiles tested by, 21
Phugoid, 149-151
Pistolesi, E., 172
Pitch, 147
Plate, Helmholtz-Kirchhoff-Rayleigh
theory of flow ahout, 25-26, 67, 68
Plunge, 147
Pohlhausen, K., 89
Polar diagram, 62
Potential flow, 36-40
Power, specific, 164-165
Power available, 182
of birds, 18, 20
Power lines, galloping, 71
Power loading, 18
Power required, 18-19, 24 50, 66-67,
169, 182
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Prandtl wing thicory (sec Lanchester-
Prondtl wing theory

Pressure drag, 61
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Projectile, 109-110, 117, 118
Propagation of pressure increment,
103-104, 108-110
Propeller, 166-173, 182
induced velocities of, 171-172
modern developments of, 173
thrust available from, 169
Propeller disk, 168
Propeller theory:
blade-element, 170-173
connection with wing theory, 170-
173
Goldstein vortex, 173
primitive, 166-167
Rankine momentum, 167-170
Propulsion, 163-191
economy of, 164-166, 182-184
reaction, 166, 173-191
Propulsive efficiency, 168
Propulsive systems, choice between,
182-185
Pulse-jet, 177-178

Ram effect, 177

Ramjet, 177, 183

Rankine, W, J. M., 72, 118, 125, 167,
170

Rankine’'s monientumn theory of pro-
pellers, 167-170

Rarefied gases, aerodynamics of, 74,
78

Rateau, A, 14

Rayleigh, Lord (]J. W. Strutt), 25, 31,
67, 68, 71

Rayleigh’s theory of flow about a
plate, 25-26, 67, 68

Reaction propulsion, 166, 173-191

Renard, C.;18

Renard’s formula for power required,

18-19, 24, 66, 169
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Reversal of controls, 158
Reynolds, O., 73, 78, 82-83
Reynolds’ experiment, 82-83, 86
Reynolds number, 76-82, 83, 86-87,
93-96, 106
critical, 87, 90
Riabouchinski, D., 14
Riemann, G. F. B, 118
Robins, B, 11
Rocket, 169, 174, 178-182, 183-191
liquid propellant, 179-181
nuclear, 182, 190
photon, 182
solid propellant, 178-179
Roll, 147
Rolling moment due to lateral dihe-
dral, 152-154
Rosen, M. W, 188
Rotational flow, 36-40
Rotation of fluid element, 36
Rott, N, 128
Roughness, effects of on boundary
fayer, 95
Routh, E. J., 147
Roy, M., 135
Rudders, 148
Runge, Carl, 51

Satellite, 187
Satellite velocity, 187
Schairer, G., 134
Schlaifer, R., 175-176
Schiieren method, 106-108
Schmidt-Fredholm theory of integral
equations, 54
Schmidt-Rohr, 178
Schubauer, G. B., 95
Sears, W. R, 54, 146, 139
Separation of boundary layer, 46-47,
89-90, 125-128, 151
caused by shock wave, 125-128
Shear flow, 37
Shock stall, 127-128, 132
Shock wave, 118-128 130-132, 137-
138
attached, 121-122
curved, 119
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Shock wave (cont.)
detached, 120-121
engines based on action of, 178
in transonic flow, 126-128, 130-132,
137-138
negative, impossibility of, 124
normal, 119
oblique, 119
progressing, 118
stationary, 118
thickness of, 120
Shock-wave boundary-layer
tion, 126-128
Short-period longitudinal motion, 149
Sideslip, 147
Sikorsky, I., 182
Similarity law:
of fluid mechanics, 73-82
of flying animals, Helmhoitz’, 19,
20
of forces on bodies, Newton’s, 9
of transonic flow, 130
Singing wires and struts, 71
Sinking velocity, 18
Skin friction, 87-97
turbulent, 90, 91, 93-94
Skin friction and drag, theories of, 61-
97
Skramstad, H. K., 95
Skyrocket (airptane), 135
Slender bodies, supersonic flow past,
117
Stender-wing theory of Jones, 56-57
Stot, leading edge, 47, 156
Small-perturbation theory, 53,
118
Solomon, quoting Agur, 3
Sommerfeld, A., 78, 95, 106
Sonic barrier, 134
Sonic “boom,” theory of, 135-138
Sound, velocity of, 104-106
Sources and sinks, method of, 72
Space station, 183
Space travel, 184, 185-191
1s of, 190
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Specific impulse, 183-184
Specific power, 164-165
Spin, 157
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Spiral instability, 154
Spoiler, 148
Stability, 143-157
controls fixed, 155
controls free, 155
directional, 152
dynamic, 146-157
of dirigible, 147
of top, 146
lateral, 149, 152-157
power effects on, 155
static, 143-146
of pendulum, 143
of ship, 143-144
Stability and control problems in tran-
sonic range, 130-132, 151
Stable and unstable arrangements of
vortices, 70-71
Stall, 46-48, 54, 156
fateral motions above, 156-157
occurs to birds, 47
shock, 127-128, 132
Stanton, T. E., 14
Starting vortex, 43
Statistical description of flow, 85, 90-
93
Step rocket, 187
Stokes, G. G., 75
Streamline body, 72
Streamlining, 73
Striae, 107
Summerfield, M,, 187
Superaerodynamics, 74
Supersonic acrodviamics, 103-139
Supersonic flow:
conical, 117-118
three-dimensional, 116-118
two-dimensional, 110-115, 119-122
Sweepback, 54, 132-134, 146, 154
effect of, on rolling moment due to
sideslip, 154
limitation of lifting-line wing the-
ory, due to, 54
Sweptback wing, effective Mach num-
ber of, 133

Tacoma Narrows bridge, 71-72
Tailless airplanes, 145-146
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Theoretical science, skepticisin re-

garding, 2, 7
Theories of drag and skin friction, 61-
97
Theory of lift, 31-57
Thermal jet-propulsion
178
Thermodynamics, 81-82
First Law of, 124
Second Law of, 124
Thomson, J. J., 51-52
Three-dimensional wing theory, 48-57
Tip vortices, 48-49, 53
Tollmien, W, 95
Topler, A., 107
Towing tank, 12
Trailing edge, sharp, 41-42
Trailing vortices, 48-49, 53
Transition, boundary layer, 87, 90, 91,
94-95
delay of, 96
Translation of fluid element, 36
Transonic flight, airplanes in, 130-
132, 151
Transonic flow, airfoils in, 125-130
Transonic range, 116
Transonic similarity rule, 129-130
Trout, cross-sectional area of, 7-8
Tsien, H. S, 115
Turbines, gas, 174-177, 178, 181, 182,
183-184
Turbojet, 175-176, 178, 183-184
specific impulse of, 183-184
Turboprop, 174, 182
Turbulence factor, 81
Turbulent flow, 82-87, 90-97
isotropic, 90-92
Turbulent friction, semiempirical the-
ories of, 92-94
Two-dimensional wing theory:
for incompressible flow, 40-48
for subsonic flow, 115-116
for supersonic flow, 110-115
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V-1, 178
V.2, 184, 185
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Variable-density wind tunnel, 77
Velocity head, 32
Velocity of escape.from earth, 186
Velocity- of satellite, 187
Velocity of sound, 104-106
Vertical riser, 183
Viscosities of organic liquids, 79-80
Viscosity, coefficient of, 75, 76, 77
Viscous friction, 74
Vivian, E. C. H., 190
Vortex, 39-40

bound, 48, 33

free, 48

starting, 43
Vortex flow, 36-40
Vortex-free flow, 36-40

in circular paths, 39-40
Vortex motion, Helmholtz’ theorem

on, 41, 48

Vortex shedding, 42-43, 67-72, 151
Vortex sheet, 41

helicoidal, 173
Vortex street, 68-72, 85
Vortices, trailing, 48-49, 53
Vorticity, 38

produced by shock wave, 119

WAC Corporal, 186, 188
Wake, 62
dead-air, in Helmholtz-Kirchhoff-
Rayleigh theory, 25-26
Wake drag, 61, 67-73, 90
reduction of, 72
Wake vortices, 42-43, 67-72, 151
Warping of wing, 148
Wave drag, 112-114
Wave machines, 178
Wayland the Smith, 3-4
Whirling arm, 11
Whittle, F., 175
Williams, W. E., 147
Wind tunnel, 13-14, 16
variable-density, 77
Wing cascade, 176
Wing loading, 18
Wing of finite span, 48-57, 62-67
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Wing of high aspect ratio, 53-35, 62-
67
Wing of infinite span, 40-48, 110-116
Wing of low aspect ratio, 55-57
Wing theory:
for elastic wings, 158-159
three-dimensional, 48-57
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(see
sional wing theory)

Wires, singing, 71
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Wood, R. McK,, 172

Work to produce lift, 18-21, 50, 64, 66
169

Wright brothers, 24, 135, 173-174

Wright brothers’ airplane, 24, 174

Y 1 1926
S-1, 139

Yaw, 147
Ziolkowski, K. E., 185, 187
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